Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book focuses on both advanced metals and their alloys and the areas of physical and process metallurgy, materials science, and processing techniques. Specific areas of interest also include titanium/nickel-based superalloys, intermetallics, advanced metallic materials, nanomaterials, metal matrix composites, functional materials, related synthesis and processing techniques, finite element modelling, statistical analysis, physical/mechanical property characterization, experimental validation, and other relevant phenomena. Physical metallurgy is important in the design and optimization of advanced materials with superior physical and mechanical properties through microstructural modifications and processing techniques. The goal of this Special Issue is to bring together recent progress, novel technologies, and advanced equipment for the design and development of advanced metals and alloys and provide guidelines/benchmarks for further research in related areas. Composites, intermetallics, and nanomaterials as well as functional materials will be also included. Some of the recent advances in the field of advanced metals and alloys include novel material processing techniques, manufacturing methods and theories, microstructural characterization, modelling development, and advanced equipment. Conventional and nonconventional processes related to machining, forming, laser processing, additive/subtractive manufacturing, surface modification, and the solidification of high-performance alloys/metals are also included.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book focuses on both advanced metals and their alloys and the areas of physical and process metallurgy, materials science, and processing techniques. Specific areas of interest also include titanium/nickel-based superalloys, intermetallics, advanced metallic materials, nanomaterials, metal matrix composites, functional materials, related synthesis and processing techniques, finite element modelling, statistical analysis, physical/mechanical property characterization, experimental validation, and other relevant phenomena. Physical metallurgy is important in the design and optimization of advanced materials with superior physical and mechanical properties through microstructural modifications and processing techniques. The goal of this Special Issue is to bring together recent progress, novel technologies, and advanced equipment for the design and development of advanced metals and alloys and provide guidelines/benchmarks for further research in related areas. Composites, intermetallics, and nanomaterials as well as functional materials will be also included. Some of the recent advances in the field of advanced metals and alloys include novel material processing techniques, manufacturing methods and theories, microstructural characterization, modelling development, and advanced equipment. Conventional and nonconventional processes related to machining, forming, laser processing, additive/subtractive manufacturing, surface modification, and the solidification of high-performance alloys/metals are also included.