Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Paperback

Blossoming Development of Splines

$136.99
Sign in or become a Readings Member to add this title to your wishlist.

In this lecture, we study Bezier and B-spline curves and surfaces, mathematical representations for free-form curves and surfaces that are common in CAD systems and are used to design aircraft and automobiles, as well as in modeling packages used by the computer animation industry. Bezier/B-splines represent polynomials and piecewise polynomials in a geometric manner using sets of control points that define the shape of the surface.

The primary analysis tool used in this lecture is blossoming, which gives an elegant labeling of the control points that allows us to analyze their properties geometrically. Blossoming is used to explore both Bezier and B-spline curves, and in particular to investigate continuity properties, change of basis algorithms, forward differencing, B-spline knot multiplicity, and knot insertion algorithms. We also look at triangle diagrams (which are closely related to blossoming), direct manipulation of B-spline curves, NURBS curves, and triangular and tensor product surfaces.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer International Publishing AG
Country
Switzerland
Pages
97
ISBN
9783031795152

In this lecture, we study Bezier and B-spline curves and surfaces, mathematical representations for free-form curves and surfaces that are common in CAD systems and are used to design aircraft and automobiles, as well as in modeling packages used by the computer animation industry. Bezier/B-splines represent polynomials and piecewise polynomials in a geometric manner using sets of control points that define the shape of the surface.

The primary analysis tool used in this lecture is blossoming, which gives an elegant labeling of the control points that allows us to analyze their properties geometrically. Blossoming is used to explore both Bezier and B-spline curves, and in particular to investigate continuity properties, change of basis algorithms, forward differencing, B-spline knot multiplicity, and knot insertion algorithms. We also look at triangle diagrams (which are closely related to blossoming), direct manipulation of B-spline curves, NURBS curves, and triangular and tensor product surfaces.

Read More
Format
Paperback
Publisher
Springer International Publishing AG
Country
Switzerland
Pages
97
ISBN
9783031795152