Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The book constitutes an introduction to stochastic calculus, stochastic differential equations and related topics such as Malliavin calculus. On the other hand it focuses on the techniques of stochastic integration and calculus via regularization initiated by the authors. The definitions relies on a smoothing procedure of the integrator process, they generalize the usual Ito and Stratonovich integrals for Brownian motion but the integrator could also not be a semimartingale and the integrand is allowed to be anticipating. The resulting calculus requires a simple formalism: nevertheless it entails pathwise techniques even though it takes into account randomness. It allows connecting different types of pathwise and non pathwise integrals such as Young, fractional, Skorohod integrals, enlargement of filtration and rough paths. The covariation, but also high order variations, play a fundamental role in the calculus via regularization, which can also be applied for irregular integrators. A large class of Gaussian processes, various generalizations of semimartingales such that Dirichlet and weak Dirichlet processes are revisited. Stochastic calculus via regularization has been successfully used in applications, for instance in robust finance and on modeling vortex filaments in turbulence. The book is addressed to PhD students and researchers in stochastic analysis and applications to various fields.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The book constitutes an introduction to stochastic calculus, stochastic differential equations and related topics such as Malliavin calculus. On the other hand it focuses on the techniques of stochastic integration and calculus via regularization initiated by the authors. The definitions relies on a smoothing procedure of the integrator process, they generalize the usual Ito and Stratonovich integrals for Brownian motion but the integrator could also not be a semimartingale and the integrand is allowed to be anticipating. The resulting calculus requires a simple formalism: nevertheless it entails pathwise techniques even though it takes into account randomness. It allows connecting different types of pathwise and non pathwise integrals such as Young, fractional, Skorohod integrals, enlargement of filtration and rough paths. The covariation, but also high order variations, play a fundamental role in the calculus via regularization, which can also be applied for irregular integrators. A large class of Gaussian processes, various generalizations of semimartingales such that Dirichlet and weak Dirichlet processes are revisited. Stochastic calculus via regularization has been successfully used in applications, for instance in robust finance and on modeling vortex filaments in turbulence. The book is addressed to PhD students and researchers in stochastic analysis and applications to various fields.