Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Complex Semisimple Quantum Groups and Representation Theory
Paperback

Complex Semisimple Quantum Groups and Representation Theory

$161.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group.

The main components are:

  • a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincare-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism,

  • the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals,

  • algebraic representation theory in terms of category O, and

  • analytic representation theory of quantized complex semisimple groups.

Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer Nature Switzerland AG
Country
Switzerland
Date
25 September 2020
Pages
376
ISBN
9783030524623

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group.

The main components are:

  • a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincare-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism,

  • the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals,

  • algebraic representation theory in terms of category O, and

  • analytic representation theory of quantized complex semisimple groups.

Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups.

Read More
Format
Paperback
Publisher
Springer Nature Switzerland AG
Country
Switzerland
Date
25 September 2020
Pages
376
ISBN
9783030524623