Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This unique book provides a unified and systematic account of internal, external and unsteady slow viscous flows, including the latest advances of the last decade, some of which are due to the author. The book shows how the method of eigenfunctions, in conjunction with least squares, can be used to solve problems of low Reynolds number flows, including three-dimensional internal and unsteady flows, which until recently were considered intractable. Although the methods used are quantitative, much stress is laid on understanding the qualitative nature of these intriguing flows. A secondary purpose of the book is to explain how the complex eigenfunction method can be used to solve problems in science and engineering.Although primarily aimed at graduate students, academics and research engineers in the areas of fluid mechanics and applied mathematics, care has been taken, through the use of numerous diagrams and much discussion, to explain to the non-specialist the qualitative features of these complex flows.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This unique book provides a unified and systematic account of internal, external and unsteady slow viscous flows, including the latest advances of the last decade, some of which are due to the author. The book shows how the method of eigenfunctions, in conjunction with least squares, can be used to solve problems of low Reynolds number flows, including three-dimensional internal and unsteady flows, which until recently were considered intractable. Although the methods used are quantitative, much stress is laid on understanding the qualitative nature of these intriguing flows. A secondary purpose of the book is to explain how the complex eigenfunction method can be used to solve problems in science and engineering.Although primarily aimed at graduate students, academics and research engineers in the areas of fluid mechanics and applied mathematics, care has been taken, through the use of numerous diagrams and much discussion, to explain to the non-specialist the qualitative features of these complex flows.