Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The boundary element method (BEM) is now a well-established numerical technique which provides an efficient alternative to the prevailing finite difference and finite element methods for the solution of a wide range of engineering problems. The main advantage of the BEM is its unique ability to provide a complete problem solution in terms of boundary values only, with substantial savings in computer time and data preparation effort. An initial restriction of the BEM was that the fundamental solution to the original partial differential equation was required in order to obtain an equivalent boundary in tegral equation. Another was that non-homogeneous terms accounting for effects such as distributed loads were included in the formulation by means of domain integrals, thus making the technique lose the attraction of its boundary-only character. Many different approaches have been developed to overcome these problems. It is our opinion that the most successful so far is the dual reciprocity method (DRM), which is the subject matter of this book. The basic idea behind this approach is to employ a fundamental solution corresponding to a simpler equation and to treat the remaining terms, as well as other non-homogeneous terms in the original equation, through a procedure which involves a series expansion using global approximating functions and the application of reciprocity principles.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The boundary element method (BEM) is now a well-established numerical technique which provides an efficient alternative to the prevailing finite difference and finite element methods for the solution of a wide range of engineering problems. The main advantage of the BEM is its unique ability to provide a complete problem solution in terms of boundary values only, with substantial savings in computer time and data preparation effort. An initial restriction of the BEM was that the fundamental solution to the original partial differential equation was required in order to obtain an equivalent boundary in tegral equation. Another was that non-homogeneous terms accounting for effects such as distributed loads were included in the formulation by means of domain integrals, thus making the technique lose the attraction of its boundary-only character. Many different approaches have been developed to overcome these problems. It is our opinion that the most successful so far is the dual reciprocity method (DRM), which is the subject matter of this book. The basic idea behind this approach is to employ a fundamental solution corresponding to a simpler equation and to treat the remaining terms, as well as other non-homogeneous terms in the original equation, through a procedure which involves a series expansion using global approximating functions and the application of reciprocity principles.