Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

Earth Observation Data Analytics Using Machine and Deep Learning: Modern tools, applications and challenges covers the basic properties, features and models for Earth observation (EO) recorded by very high-resolution (VHR) multispectral, hyperspectral, synthetic aperture radar (SAR), and multi-temporal observations.
Approaches for applying pre-processing methods and deep learning techniques to satellite images for various applications - such as identifying land cover features, object detection, crop classification, target recognition, and the monitoring of earth resources - are described. Cost-efficient resource allocation solutions are provided, which are robust against common uncertainties that occur in annotating and extracting features on satellite images.
This book is a valuable resource for engineers and researchers in academia and industry working on AI, machine and deep learning, data science, remote sensing, GIS, SAR, satellite communications, space science, image processing and computer vision. It will also be of interest to staff at research agencies, lecturers and advanced students in related fields. Readers will need a basic understanding of computing, remote sensing, GIS and image interpretation.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
Earth Observation Data Analytics Using Machine and Deep Learning: Modern tools, applications and challenges covers the basic properties, features and models for Earth observation (EO) recorded by very high-resolution (VHR) multispectral, hyperspectral, synthetic aperture radar (SAR), and multi-temporal observations.
Approaches for applying pre-processing methods and deep learning techniques to satellite images for various applications - such as identifying land cover features, object detection, crop classification, target recognition, and the monitoring of earth resources - are described. Cost-efficient resource allocation solutions are provided, which are robust against common uncertainties that occur in annotating and extracting features on satellite images.
This book is a valuable resource for engineers and researchers in academia and industry working on AI, machine and deep learning, data science, remote sensing, GIS, SAR, satellite communications, space science, image processing and computer vision. It will also be of interest to staff at research agencies, lecturers and advanced students in related fields. Readers will need a basic understanding of computing, remote sensing, GIS and image interpretation.