Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Rechargeable Battery Electrolytes
Hardback

Rechargeable Battery Electrolytes

$799.99
Sign in or become a Readings Member to add this title to your wishlist.

Rechargeable batteries are one of the crucial ways we are going to solve the sustainable energy crisis. Lithium-ion batteries have been commercialised and are heavily relied upon, however, the scarcity of lithium resources increases the production cost and hinders further application. Additionally, the toxic and flammable electrolyte brings many potential safety hazards including environmental pollution. Looking for low-cost, safe, and environmentally friendly alternatives to LIBs has become a valuable research direction.

The modification of batteries is focused on the anode, the cathode and electrolyte. Globally, researchers have moved onto new rechargeable batteries based on multivalent metal ions which have been extensively studied, including K+, Ca2+, Mg2+ and Al3+. However, the electrolyte is a very important component of a battery as its physical and chemical properties directly affect the electrochemical performance and energy storage mechanism.

Finding and selecting an appropriate electrolyte system is a crucial factor that must be taken into account to make these post-lithium-ion batteries commercially viable. Until now, it has been challenging to develop a suitable electrolyte with a wide electrochemical stability window and stable anode interface.

This book covers all the major ion-battery groups and their electrolytes, examining their performance and suitability in different solvents: aqueous, non-aqueous, solid gel and polymer.

It is suitable for all levels of students and researchers who want to understand the fundamentals and future challenges of developing electrolytes.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Royal Society of Chemistry
Country
United Kingdom
Date
26 February 2024
Pages
346
ISBN
9781839167379

Rechargeable batteries are one of the crucial ways we are going to solve the sustainable energy crisis. Lithium-ion batteries have been commercialised and are heavily relied upon, however, the scarcity of lithium resources increases the production cost and hinders further application. Additionally, the toxic and flammable electrolyte brings many potential safety hazards including environmental pollution. Looking for low-cost, safe, and environmentally friendly alternatives to LIBs has become a valuable research direction.

The modification of batteries is focused on the anode, the cathode and electrolyte. Globally, researchers have moved onto new rechargeable batteries based on multivalent metal ions which have been extensively studied, including K+, Ca2+, Mg2+ and Al3+. However, the electrolyte is a very important component of a battery as its physical and chemical properties directly affect the electrochemical performance and energy storage mechanism.

Finding and selecting an appropriate electrolyte system is a crucial factor that must be taken into account to make these post-lithium-ion batteries commercially viable. Until now, it has been challenging to develop a suitable electrolyte with a wide electrochemical stability window and stable anode interface.

This book covers all the major ion-battery groups and their electrolytes, examining their performance and suitability in different solvents: aqueous, non-aqueous, solid gel and polymer.

It is suitable for all levels of students and researchers who want to understand the fundamentals and future challenges of developing electrolytes.

Read More
Format
Hardback
Publisher
Royal Society of Chemistry
Country
United Kingdom
Date
26 February 2024
Pages
346
ISBN
9781839167379