Matrix Factorization for Multimedia Clustering, Hangjun Che, Xin Wang, Xing He, Man-Fai Leung, Baicheng Pan (9781837241996) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

Matrix Factorization for Multimedia Clustering
Hardback

Matrix Factorization for Multimedia Clustering

$406.99
Sign in or become a Readings Member to add this title to your wishlist.

Clustering is a fundamental problem in multimedia information processing. This co-authored book explores clustering principles through advanced data analysis techniques, such as matrix and tensor factorization, which are highly relevant for multimedia information processing. Multimedia data may exhibit various forms of noise represented from multiple perspectives, making traditional clustering approaches less effective. The authors consider complex conditions such as noise sensitivity and discuss methods to address these challenges in the context of multimedia data. They also examine popular regularization techniques, providing theoretical analyses that demonstrate the relationship between regularization and clustering performance.

Matrix Factorization for Multimedia Clustering: Models, techniques, optimization and applications will serve as a solid advanced reference for researchers, scientists, engineers and advanced students who wish to implement practical tasks through clustering formulations. Additionally, the authors provide a detailed description of convergence theory to enable readers to conduct the corresponding algorithm analyses. They investigate novel regularization techniques, such as self-paced learning, optimal graph learning, and diversity regularization, to uncover the geometric structure of data. These techniques are beneficial for enhancing clustering performance. Furthermore, they demonstrate the efficiency of these regularization techniques through theoretical analyses, practical experiments and applications in real-world datasets.
Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Institution of Engineering and Technology
Country
United Kingdom
Date
31 December 2025
Pages
269
ISBN
9781837241996

Clustering is a fundamental problem in multimedia information processing. This co-authored book explores clustering principles through advanced data analysis techniques, such as matrix and tensor factorization, which are highly relevant for multimedia information processing. Multimedia data may exhibit various forms of noise represented from multiple perspectives, making traditional clustering approaches less effective. The authors consider complex conditions such as noise sensitivity and discuss methods to address these challenges in the context of multimedia data. They also examine popular regularization techniques, providing theoretical analyses that demonstrate the relationship between regularization and clustering performance.

Matrix Factorization for Multimedia Clustering: Models, techniques, optimization and applications will serve as a solid advanced reference for researchers, scientists, engineers and advanced students who wish to implement practical tasks through clustering formulations. Additionally, the authors provide a detailed description of convergence theory to enable readers to conduct the corresponding algorithm analyses. They investigate novel regularization techniques, such as self-paced learning, optimal graph learning, and diversity regularization, to uncover the geometric structure of data. These techniques are beneficial for enhancing clustering performance. Furthermore, they demonstrate the efficiency of these regularization techniques through theoretical analyses, practical experiments and applications in real-world datasets.
Read More
Format
Hardback
Publisher
Institution of Engineering and Technology
Country
United Kingdom
Date
31 December 2025
Pages
269
ISBN
9781837241996