AI-Based Forecasting of Solar Photovoltaics Power Generation, (9781837240197) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Hardback

AI-Based Forecasting of Solar Photovoltaics Power Generation

$399.99
Sign in or become a Readings Member to add this title to your wishlist.

The widespread deployment of photovoltaics (PV) systems has emerged as a key element in the global shift toward a carbon-neutral and sustainable energy systems. Driven by a combination of supportive regulatory frameworks, government incentive programs, technical developments, and increasing environmental awareness, the adoption of PV technologies has witnessed remarkable growth in recent years. However, the rapid integration of distributed PV systems into existing electricity grid infrastructure introduces new challenges, particularly concerning voltage regulation, reverse power flow, and congestion within the electricity grid. These issues are intensified when PV systems are integrated without proper strategy. In this context, solar PV power forecasting has become an essential tool for ensuring the reliable and efficient integration of solar PV systems into power systems. Artificial intelligence (AI) and machine learning (ML) offer means to forecast PV power and energy generation based on historical data of PV generation, meteorological data, and/or weather forecasts.

AI-Based Forecasting of Solar Photovoltaics Power Generation blends theoretical knowledge with practical case studies, which serves as a comprehensive and timely contribution to the rapidly evolving field of solar PV forecasting. It covers topics such as data collection and processing, solar forecasting based on statistical time-series, machine and deep learning, hybrid and probabilistic approaches, model optimization, hyperparameter tuning, and solar PV forecasting for energy system integration and control.


           As solar PV systems become increasingly integrated into energy systems, a dedicated book on PV generation forecasting is incredibly useful, making this book an important resource for energy system operators, policymakers, researchers, and students seeking to improve the reliability, resiliency, and efficiency of solar PV systems and the broader systems into which they are integrated.
Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Institution of Engineering and Technology
Country
United Kingdom
Date
1 February 2026
Pages
312
ISBN
9781837240197

The widespread deployment of photovoltaics (PV) systems has emerged as a key element in the global shift toward a carbon-neutral and sustainable energy systems. Driven by a combination of supportive regulatory frameworks, government incentive programs, technical developments, and increasing environmental awareness, the adoption of PV technologies has witnessed remarkable growth in recent years. However, the rapid integration of distributed PV systems into existing electricity grid infrastructure introduces new challenges, particularly concerning voltage regulation, reverse power flow, and congestion within the electricity grid. These issues are intensified when PV systems are integrated without proper strategy. In this context, solar PV power forecasting has become an essential tool for ensuring the reliable and efficient integration of solar PV systems into power systems. Artificial intelligence (AI) and machine learning (ML) offer means to forecast PV power and energy generation based on historical data of PV generation, meteorological data, and/or weather forecasts.

AI-Based Forecasting of Solar Photovoltaics Power Generation blends theoretical knowledge with practical case studies, which serves as a comprehensive and timely contribution to the rapidly evolving field of solar PV forecasting. It covers topics such as data collection and processing, solar forecasting based on statistical time-series, machine and deep learning, hybrid and probabilistic approaches, model optimization, hyperparameter tuning, and solar PV forecasting for energy system integration and control.


           As solar PV systems become increasingly integrated into energy systems, a dedicated book on PV generation forecasting is incredibly useful, making this book an important resource for energy system operators, policymakers, researchers, and students seeking to improve the reliability, resiliency, and efficiency of solar PV systems and the broader systems into which they are integrated.
Read More
Format
Hardback
Publisher
Institution of Engineering and Technology
Country
United Kingdom
Date
1 February 2026
Pages
312
ISBN
9781837240197