Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

Machine Learning Based Air Traffic Surveillance System Using Image Processing analyses how advanced machine learning algorithms and image processing technologies are revolutionising air-traffic management. By integrating real-time visual data analysis with sophisticated artificial intelligence techniques, this book highlights the potential to enhance situational awareness, safety, and efficiency in managing increasingly complex and congested airspaces. It delves into the use of convolutional neural networks (CNNs) and deep learning models to identify, track, and analyse aircraft movements, offering precise and actionable insights for air-traffic controllers.
This comprehensive resource combines theoretical foundations with practical applications, including real-world case studies and discussions on system implementation. It addresses critical aspects such as object detection, anomaly identification, and trajectory prediction, alongside regulatory, ethical, and cybersecurity considerations. With its blend of cutting-edge research and practical insights, this book is an invaluable guide for professionals, researchers, and students in aerospace engineering, artificial intelligence, and computer vision, providing a roadmap for advancing air-traffic surveillance and management in the era of intelligent systems.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
Machine Learning Based Air Traffic Surveillance System Using Image Processing analyses how advanced machine learning algorithms and image processing technologies are revolutionising air-traffic management. By integrating real-time visual data analysis with sophisticated artificial intelligence techniques, this book highlights the potential to enhance situational awareness, safety, and efficiency in managing increasingly complex and congested airspaces. It delves into the use of convolutional neural networks (CNNs) and deep learning models to identify, track, and analyse aircraft movements, offering precise and actionable insights for air-traffic controllers.
This comprehensive resource combines theoretical foundations with practical applications, including real-world case studies and discussions on system implementation. It addresses critical aspects such as object detection, anomaly identification, and trajectory prediction, alongside regulatory, ethical, and cybersecurity considerations. With its blend of cutting-edge research and practical insights, this book is an invaluable guide for professionals, researchers, and students in aerospace engineering, artificial intelligence, and computer vision, providing a roadmap for advancing air-traffic surveillance and management in the era of intelligent systems.