Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Simplify Big Data Analytics with Amazon EMR: A beginner's guide to learning and implementing Amazon EMR for building data analytics solutions
Paperback

Simplify Big Data Analytics with Amazon EMR: A beginner’s guide to learning and implementing Amazon EMR for building data analytics solutions

$116.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Design scalable big data solutions using Hadoop, Spark, and AWS cloud native services

Key Features

Build data pipelines that require distributed processing capabilities on a large volume of data Discover the security features of EMR such as data protection and granular permission management Explore best practices and optimization techniques for building data analytics solutions in Amazon EMR

Book DescriptionAmazon EMR, formerly Amazon Elastic MapReduce, provides a managed Hadoop cluster in Amazon Web Services (AWS) that you can use to implement batch or streaming data pipelines. By gaining expertise in Amazon EMR, you can design and implement data analytics pipelines with persistent or transient EMR clusters in AWS.

This book is a practical guide to Amazon EMR for building data pipelines. You’ll start by understanding the Amazon EMR architecture, cluster nodes, features, and deployment options, along with their pricing. Next, the book covers the various big data applications that EMR supports. You’ll then focus on the advanced configuration of EMR applications, hardware, networking, security, troubleshooting, logging, and the different SDKs and APIs it provides. Later chapters will show you how to implement common Amazon EMR use cases, including batch ETL with Spark, real-time streaming with Spark Streaming, and handling UPSERT in S3 Data Lake with Apache Hudi. Finally, you’ll orchestrate your EMR jobs and strategize on-premises Hadoop cluster migration to EMR. In addition to this, you’ll explore best practices and cost optimization techniques while implementing your data analytics pipeline in EMR.

By the end of this book, you’ll be able to build and deploy Hadoop- or Spark-based apps on Amazon EMR and also migrate your existing on-premises Hadoop workloads to AWS.

What you will learn

Explore Amazon EMR features, architecture, Hadoop interfaces, and EMR Studio Configure, deploy, and orchestrate Hadoop or Spark jobs in production Implement the security, data governance, and monitoring capabilities of EMR Build applications for batch and real-time streaming data analytics solutions Perform interactive development with a persistent EMR cluster and Notebook Orchestrate an EMR Spark job using AWS Step Functions and Apache Airflow

Who this book is forThis book is for data engineers, data analysts, data scientists, and solution architects who are interested in building data analytics solutions with the Hadoop ecosystem services and Amazon EMR. Prior experience in either Python programming, Scala, or the Java programming language and a basic understanding of Hadoop and AWS will help you make the most out of this book.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
25 March 2022
Pages
430
ISBN
9781801071079

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Design scalable big data solutions using Hadoop, Spark, and AWS cloud native services

Key Features

Build data pipelines that require distributed processing capabilities on a large volume of data Discover the security features of EMR such as data protection and granular permission management Explore best practices and optimization techniques for building data analytics solutions in Amazon EMR

Book DescriptionAmazon EMR, formerly Amazon Elastic MapReduce, provides a managed Hadoop cluster in Amazon Web Services (AWS) that you can use to implement batch or streaming data pipelines. By gaining expertise in Amazon EMR, you can design and implement data analytics pipelines with persistent or transient EMR clusters in AWS.

This book is a practical guide to Amazon EMR for building data pipelines. You’ll start by understanding the Amazon EMR architecture, cluster nodes, features, and deployment options, along with their pricing. Next, the book covers the various big data applications that EMR supports. You’ll then focus on the advanced configuration of EMR applications, hardware, networking, security, troubleshooting, logging, and the different SDKs and APIs it provides. Later chapters will show you how to implement common Amazon EMR use cases, including batch ETL with Spark, real-time streaming with Spark Streaming, and handling UPSERT in S3 Data Lake with Apache Hudi. Finally, you’ll orchestrate your EMR jobs and strategize on-premises Hadoop cluster migration to EMR. In addition to this, you’ll explore best practices and cost optimization techniques while implementing your data analytics pipeline in EMR.

By the end of this book, you’ll be able to build and deploy Hadoop- or Spark-based apps on Amazon EMR and also migrate your existing on-premises Hadoop workloads to AWS.

What you will learn

Explore Amazon EMR features, architecture, Hadoop interfaces, and EMR Studio Configure, deploy, and orchestrate Hadoop or Spark jobs in production Implement the security, data governance, and monitoring capabilities of EMR Build applications for batch and real-time streaming data analytics solutions Perform interactive development with a persistent EMR cluster and Notebook Orchestrate an EMR Spark job using AWS Step Functions and Apache Airflow

Who this book is forThis book is for data engineers, data analysts, data scientists, and solution architects who are interested in building data analytics solutions with the Hadoop ecosystem services and Amazon EMR. Prior experience in either Python programming, Scala, or the Java programming language and a basic understanding of Hadoop and AWS will help you make the most out of this book.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
25 March 2022
Pages
430
ISBN
9781801071079