Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

Analysis of Fractals began to take shape as a mathematical field in the late 1980s. Traditionally, the focus of analysis has been on finitely ramified fractals - those where copies intersect at only finitely many points. To date, a comprehensive theory for infinitely ramified fractals remains elusive.This monograph outlines the theory of self-similar energies on finitely ramified self-similar fractals. A self-similar fractal is a non-empty, compact subset ? of a metric space (X, d) that satisfies ? = kSi=1?i(?) where ?i are a finite number of contractive similarities. Using these self-similar energies, one can construct Laplacians, harmonic functions, Brownian motion, and differential equations specific to these fractals.On finitely ramified fractals, self-similar energies are derived from eigenforms - quadratic forms that are eigenvectors of a special nonlinear operator within a finite-dimensional function space. The monograph also explores conditions for the existence and uniqueness of these self-similar energies and addresses related problems. For certain cases, complete solutions are provided.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
Analysis of Fractals began to take shape as a mathematical field in the late 1980s. Traditionally, the focus of analysis has been on finitely ramified fractals - those where copies intersect at only finitely many points. To date, a comprehensive theory for infinitely ramified fractals remains elusive.This monograph outlines the theory of self-similar energies on finitely ramified self-similar fractals. A self-similar fractal is a non-empty, compact subset ? of a metric space (X, d) that satisfies ? = kSi=1?i(?) where ?i are a finite number of contractive similarities. Using these self-similar energies, one can construct Laplacians, harmonic functions, Brownian motion, and differential equations specific to these fractals.On finitely ramified fractals, self-similar energies are derived from eigenforms - quadratic forms that are eigenvectors of a special nonlinear operator within a finite-dimensional function space. The monograph also explores conditions for the existence and uniqueness of these self-similar energies and addresses related problems. For certain cases, complete solutions are provided.