Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book introduces an innovative approach to multi-fidelity probabilistic optimisation for aircraft composite structures, addressing the challenge of balancing reliability with computational cost. Probabilistic optimisation pursues statistically reliable and robust solutions by accounting for uncertainties in data, such as material properties and geometry tolerances. Traditional approaches using high-fidelity models, though accurate, are computationally expensive and time-consuming, especially when using complex methods such as Monte Carlo simulations and gradient calculations.For the first time, the proposed multi-fidelity method combines high- and low-fidelity models, enabling high-fidelity models to focus on specific areas of the design space, while low-fidelity models explore the entire space. Machine learning technologies, such as artificial neural networks and nonlinear autoregressive Gaussian processes, fill information gaps between different fidelity models, enhancing model accuracy. The multi-fidelity probabilistic optimisation framework is demonstrated through the reliability-based and robust design problems of aircraft composite structures under a thermo-mechanical environment, showing acceptable accuracy and reductions in computational time.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book introduces an innovative approach to multi-fidelity probabilistic optimisation for aircraft composite structures, addressing the challenge of balancing reliability with computational cost. Probabilistic optimisation pursues statistically reliable and robust solutions by accounting for uncertainties in data, such as material properties and geometry tolerances. Traditional approaches using high-fidelity models, though accurate, are computationally expensive and time-consuming, especially when using complex methods such as Monte Carlo simulations and gradient calculations.For the first time, the proposed multi-fidelity method combines high- and low-fidelity models, enabling high-fidelity models to focus on specific areas of the design space, while low-fidelity models explore the entire space. Machine learning technologies, such as artificial neural networks and nonlinear autoregressive Gaussian processes, fill information gaps between different fidelity models, enhancing model accuracy. The multi-fidelity probabilistic optimisation framework is demonstrated through the reliability-based and robust design problems of aircraft composite structures under a thermo-mechanical environment, showing acceptable accuracy and reductions in computational time.