Applied Supervised Learning with Python: Use scikit-learn to build predictive models from real-world datasets and prepare yourself for the future of machine learning, Benjamin Johnston,Ishita Mathur (9781789954920) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Applied Supervised Learning with Python: Use scikit-learn to build predictive models from real-world datasets and prepare yourself for the future of machine learning
Paperback

Applied Supervised Learning with Python: Use scikit-learn to build predictive models from real-world datasets and prepare yourself for the future of machine learning

$105.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Explore the exciting world of machine learning with the fastest growing technology in the world

Key Features

Understand various machine learning concepts with real-world examples Implement a supervised machine learning pipeline from data ingestion to validation Gain insights into how you can use machine learning in everyday life

Book DescriptionMachine learning-the ability of a machine to give right answers based on input data-has revolutionized the way we do business. Applied Supervised Learning with Python provides a rich understanding of how you can apply machine learning techniques in your data science projects using Python. You’ll explore Jupyter Notebooks, the technology used commonly in academic and commercial circles with in-line code running support.

With the help of fun examples, you’ll gain experience working on the Python machine learning toolkit-from performing basic data cleaning and processing to working with a range of regression and classification algorithms. Once you’ve grasped the basics, you’ll learn how to build and train your own models using advanced techniques such as decision trees, ensemble modeling, validation, and error metrics. You’ll also learn data visualization techniques using powerful Python libraries such as Matplotlib and Seaborn.

This book also covers ensemble modeling and random forest classifiers along with other methods for combining results from multiple models, and concludes by delving into cross-validation to test your algorithm and check how well the model works on unseen data.

By the end of this book, you’ll be equipped to not only work with machine learning algorithms, but also be able to create some of your own!

What you will learn

Understand the concept of supervised learning and its applications Implement common supervised learning algorithms using machine learning Python libraries Validate models using the k-fold technique Build your models with decision trees to get results effortlessly Use ensemble modeling techniques to improve the performance of your model Apply a variety of metrics to compare machine learning models

Who this book is forApplied Supervised Learning with Python is for you if you want to gain a solid understanding of machine learning using Python. It’ll help if you to have some experience in any functional or object-oriented language and a basic understanding of Python libraries and expressions, such as arrays and dictionaries.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
27 April 2019
Pages
404
ISBN
9781789954920

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Explore the exciting world of machine learning with the fastest growing technology in the world

Key Features

Understand various machine learning concepts with real-world examples Implement a supervised machine learning pipeline from data ingestion to validation Gain insights into how you can use machine learning in everyday life

Book DescriptionMachine learning-the ability of a machine to give right answers based on input data-has revolutionized the way we do business. Applied Supervised Learning with Python provides a rich understanding of how you can apply machine learning techniques in your data science projects using Python. You’ll explore Jupyter Notebooks, the technology used commonly in academic and commercial circles with in-line code running support.

With the help of fun examples, you’ll gain experience working on the Python machine learning toolkit-from performing basic data cleaning and processing to working with a range of regression and classification algorithms. Once you’ve grasped the basics, you’ll learn how to build and train your own models using advanced techniques such as decision trees, ensemble modeling, validation, and error metrics. You’ll also learn data visualization techniques using powerful Python libraries such as Matplotlib and Seaborn.

This book also covers ensemble modeling and random forest classifiers along with other methods for combining results from multiple models, and concludes by delving into cross-validation to test your algorithm and check how well the model works on unseen data.

By the end of this book, you’ll be equipped to not only work with machine learning algorithms, but also be able to create some of your own!

What you will learn

Understand the concept of supervised learning and its applications Implement common supervised learning algorithms using machine learning Python libraries Validate models using the k-fold technique Build your models with decision trees to get results effortlessly Use ensemble modeling techniques to improve the performance of your model Apply a variety of metrics to compare machine learning models

Who this book is forApplied Supervised Learning with Python is for you if you want to gain a solid understanding of machine learning using Python. It’ll help if you to have some experience in any functional or object-oriented language and a basic understanding of Python libraries and expressions, such as arrays and dictionaries.

Read More
Format
Paperback
Publisher
Packt Publishing Limited
Country
United Kingdom
Date
27 April 2019
Pages
404
ISBN
9781789954920