Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Foundations of Learning Analytics and EDM: Provide an overview of the foundational concepts, theories, and methods in learning analytics and educational data mining (EDM), including data collection, preprocessing, analysis, and interpretation techniques. Data-driven Decision Making: Explore how learning analytics and EDM can inform data-driven decision-making processes in educational settings, including student assessment, curriculum design, instructional strategies, and personalized learning interventions. Predictive Modeling and Student Success: Discuss predictive modeling techniques used in learning analytics and EDM to identify patterns and trends in educational data, predict student outcomes (e.g., performance, retention), and provide early interventions to support student success. Ethical and Privacy Considerations: Address ethical and privacy considerations in the collection, analysis, and use of educational data for learning analytics and EDM, including issues related to data privacy, informed consent, data ownership, bias, and fairness. Case Studies and Applications: Illustrate key concepts and methods with real-world case studies and examples of learning analytics and EDM applications in diverse educational contexts, such as K-12 education, higher education, corporate training, and online learning environments.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Foundations of Learning Analytics and EDM: Provide an overview of the foundational concepts, theories, and methods in learning analytics and educational data mining (EDM), including data collection, preprocessing, analysis, and interpretation techniques. Data-driven Decision Making: Explore how learning analytics and EDM can inform data-driven decision-making processes in educational settings, including student assessment, curriculum design, instructional strategies, and personalized learning interventions. Predictive Modeling and Student Success: Discuss predictive modeling techniques used in learning analytics and EDM to identify patterns and trends in educational data, predict student outcomes (e.g., performance, retention), and provide early interventions to support student success. Ethical and Privacy Considerations: Address ethical and privacy considerations in the collection, analysis, and use of educational data for learning analytics and EDM, including issues related to data privacy, informed consent, data ownership, bias, and fairness. Case Studies and Applications: Illustrate key concepts and methods with real-world case studies and examples of learning analytics and EDM applications in diverse educational contexts, such as K-12 education, higher education, corporate training, and online learning environments.