Distributed Learning Systems with First-Order Methods, Ji Liu,Ce Zhang (9781680837001) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

In Victoria? Order in-stock items by Sunday 14 December to get your gifts by Christmas! Or find the deadline for your state here.

Distributed Learning Systems with First-Order Methods
Paperback

Distributed Learning Systems with First-Order Methods

$208.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Scalable and efficient distributed learning is one of the main driving forces behind the recent rapid advancement of machine learning and artificial intelligence. One prominent feature of this development is that recent progress has been made by researchers in two communities: (1) the system community such as database, data management, and distributed systems, and (2) the machine learning and mathematical optimization community. The interaction and knowledge sharing between these two communities has led to the rapid development of new distributed learning systems and theory.

This monograph provides a brief introduction to three distributed learning techniques that have recently been developed: lossy communication compression, asynchronous communication, and decentralized communication. These have significant impact on the work in both the system and machine learning and mathematical optimization communities but to fully realize the potential, it is essential they understand the whole picture. This monograph provides the bridge between the two communities. The simplified introduction to the essential aspects of each community enables researchers to gain insights into the factors influencing both.The monograph provides students and researchers the groundwork for developing faster and better research results in this dynamic area of research.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
24 June 2020
Pages
108
ISBN
9781680837001

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Scalable and efficient distributed learning is one of the main driving forces behind the recent rapid advancement of machine learning and artificial intelligence. One prominent feature of this development is that recent progress has been made by researchers in two communities: (1) the system community such as database, data management, and distributed systems, and (2) the machine learning and mathematical optimization community. The interaction and knowledge sharing between these two communities has led to the rapid development of new distributed learning systems and theory.

This monograph provides a brief introduction to three distributed learning techniques that have recently been developed: lossy communication compression, asynchronous communication, and decentralized communication. These have significant impact on the work in both the system and machine learning and mathematical optimization communities but to fully realize the potential, it is essential they understand the whole picture. This monograph provides the bridge between the two communities. The simplified introduction to the essential aspects of each community enables researchers to gain insights into the factors influencing both.The monograph provides students and researchers the groundwork for developing faster and better research results in this dynamic area of research.

Read More
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
24 June 2020
Pages
108
ISBN
9781680837001