Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Hilbert space theory is an invaluable mathematical tool in numerous signal processing and systems theory applications. Hilbert spaces satisfying certain additional properties are known as Reproducing Kernel Hilbert Spaces (RKHSs).
This primer gives a gentle and novel introduction to RKHS theory. It also presents several classical applications. It concludes by focusing on recent developments in the machine learning literature concerning embeddings of random variables. Parenthetical remarks are used to provide greater technical detail, which some readers may welcome, but they may be ignored without compromising the cohesion of the primer. Proofs are there for those wishing to gain experience at working with RKHSs; simple proofs are preferred to short, clever, but otherwise uninformative proofs. Italicised comments appearing in proofs provide intuition or orientation or both.
A Primer on Reproducing Kernel Hilbert Spaces empowers readers to recognize when and how RKHS theory can profit them in their own work.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Hilbert space theory is an invaluable mathematical tool in numerous signal processing and systems theory applications. Hilbert spaces satisfying certain additional properties are known as Reproducing Kernel Hilbert Spaces (RKHSs).
This primer gives a gentle and novel introduction to RKHS theory. It also presents several classical applications. It concludes by focusing on recent developments in the machine learning literature concerning embeddings of random variables. Parenthetical remarks are used to provide greater technical detail, which some readers may welcome, but they may be ignored without compromising the cohesion of the primer. Proofs are there for those wishing to gain experience at working with RKHSs; simple proofs are preferred to short, clever, but otherwise uninformative proofs. Italicised comments appearing in proofs provide intuition or orientation or both.
A Primer on Reproducing Kernel Hilbert Spaces empowers readers to recognize when and how RKHS theory can profit them in their own work.