Differential Privacy in Artificial Intelligence: From Theory to Practice, (9781638284765) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Differential Privacy in Artificial Intelligence: From Theory to Practice
Hardback

Differential Privacy in Artificial Intelligence: From Theory to Practice

$242.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Differential Privacy in Artificial Intelligence: From Theory to Practice is a comprehensive resource designed to review the principles and applications of differential privacy in a world increasingly driven by data. This book delves into the theoretical underpinnings of differential privacy, its use in machine learning systems, practical implementation details, and its broader social and legal ramifications. Intended as a primer and a deep dive, it lays a solid foundation by introducing essential concepts and mechanisms critical to understanding differential privacy.

From theoretical foundations to practical application, the book is organized into five distinct parts. Part I reviews the foundational notions of differential privacy in the central and local models, delving into composition and privacy amplification. The discussion extends to practical strategies for data release and the creation of synthetic data, which is essential for real-world applications. Part II focuses on the application of differential privacy in optimization and learning, examining the integration of privacy measures in machine learning, including private optimization methods and private federated learning.

Beyond technical applications, the book highlights the use of differential privacy in critical sectors such as healthcare and energy, and discusses its implications in image and video analysis in Part III. Part IV provides a thorough look at the tools and challenges in deploying privacy-preserving models, including insights into programming frameworks and machine learning tools. Finally, Part V addresses the societal impact of differential privacy, discussing its intersection with public policy, law, fairness, and bias.

Targeted at researchers, practitioners, and policymakers, Differential Privacy in Artificial Intelligence: From Theory to Practice aims to be an essential guide for anyone committed to advancing privacy in the digital age, providing the knowledge needed to develop and deploy effective and ethical privacy solutions across various domains.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Emerald Publishing Inc
Country
United States
Date
27 May 2025
Pages
475
ISBN
9781638284765

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Differential Privacy in Artificial Intelligence: From Theory to Practice is a comprehensive resource designed to review the principles and applications of differential privacy in a world increasingly driven by data. This book delves into the theoretical underpinnings of differential privacy, its use in machine learning systems, practical implementation details, and its broader social and legal ramifications. Intended as a primer and a deep dive, it lays a solid foundation by introducing essential concepts and mechanisms critical to understanding differential privacy.

From theoretical foundations to practical application, the book is organized into five distinct parts. Part I reviews the foundational notions of differential privacy in the central and local models, delving into composition and privacy amplification. The discussion extends to practical strategies for data release and the creation of synthetic data, which is essential for real-world applications. Part II focuses on the application of differential privacy in optimization and learning, examining the integration of privacy measures in machine learning, including private optimization methods and private federated learning.

Beyond technical applications, the book highlights the use of differential privacy in critical sectors such as healthcare and energy, and discusses its implications in image and video analysis in Part III. Part IV provides a thorough look at the tools and challenges in deploying privacy-preserving models, including insights into programming frameworks and machine learning tools. Finally, Part V addresses the societal impact of differential privacy, discussing its intersection with public policy, law, fairness, and bias.

Targeted at researchers, practitioners, and policymakers, Differential Privacy in Artificial Intelligence: From Theory to Practice aims to be an essential guide for anyone committed to advancing privacy in the digital age, providing the knowledge needed to develop and deploy effective and ethical privacy solutions across various domains.

Read More
Format
Hardback
Publisher
Emerald Publishing Inc
Country
United States
Date
27 May 2025
Pages
475
ISBN
9781638284765