Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Efficient and Effective Tree-based and Neural Learning to Rank
Paperback

Efficient and Effective Tree-based and Neural Learning to Rank

$161.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Information retrieval researchers develop algorithmic solutions to hard problems and insist on a proper, multifaceted evaluation of ideas. As we move towards even more complex deep learning models in a wide range of applications, questions on efficiency once again resurface with renewed urgency. Efficiency is no longer limited to time and space but has found new, challenging dimensions that stretch to resource-, sample- and energy-efficiency with ramifications for researchers, users, and the environment.

This monograph takes a step towards promoting the study of efficiency in the era of neural information retrieval by offering a comprehensive survey of the literature on efficiency and effectiveness in ranking and retrieval. It is inspired by the parallels that exist between the challenges in neural network-based ranking solutions and their predecessors, decision forest-based learning-to-rank models, and the connections between the solutions the literature to date has to offer. By understanding the fundamentals underpinning these algorithmic and data structure solutions one can better identify future directions and more efficiently determine the merits of ideas.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
15 May 2023
Pages
136
ISBN
9781638281986

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Information retrieval researchers develop algorithmic solutions to hard problems and insist on a proper, multifaceted evaluation of ideas. As we move towards even more complex deep learning models in a wide range of applications, questions on efficiency once again resurface with renewed urgency. Efficiency is no longer limited to time and space but has found new, challenging dimensions that stretch to resource-, sample- and energy-efficiency with ramifications for researchers, users, and the environment.

This monograph takes a step towards promoting the study of efficiency in the era of neural information retrieval by offering a comprehensive survey of the literature on efficiency and effectiveness in ranking and retrieval. It is inspired by the parallels that exist between the challenges in neural network-based ranking solutions and their predecessors, decision forest-based learning-to-rank models, and the connections between the solutions the literature to date has to offer. By understanding the fundamentals underpinning these algorithmic and data structure solutions one can better identify future directions and more efficiently determine the merits of ideas.

Read More
Format
Paperback
Publisher
now publishers Inc
Country
United States
Date
15 May 2023
Pages
136
ISBN
9781638281986