Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This monograph serves as an introduction and detailed overview of some important topics in distribution testing, an area of theoretical computer science which falls under the general umbrella of property testing, and sits at the intersection of computational learning, statistical learning and hypothesis testing, information theory, and the theory of machine learning.
Written in a tutorial style, the author provides the reader with a thorough overview, including a historical perspective on work to date. After introducing the reader to distribution testing, the author proceeds to cover uniformity testing in-depth, and then builds on this to include techniques and "ready-to-use" theorems that establish sample complexity lower bounds. Finally the author discusses the most appropriate techniques to adopt in various settings, including: Quantization, Privacy, Noisy channels, Streaming and memory-limited devices, and Communication constraints.
Throughout the tutorial the reader is guided through the basic concepts and mathematical complexities of the topics under review. The inclusion of Exercises and a separately available Solutions manual make this book ideal to be used as part of a graduate course.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This monograph serves as an introduction and detailed overview of some important topics in distribution testing, an area of theoretical computer science which falls under the general umbrella of property testing, and sits at the intersection of computational learning, statistical learning and hypothesis testing, information theory, and the theory of machine learning.
Written in a tutorial style, the author provides the reader with a thorough overview, including a historical perspective on work to date. After introducing the reader to distribution testing, the author proceeds to cover uniformity testing in-depth, and then builds on this to include techniques and "ready-to-use" theorems that establish sample complexity lower bounds. Finally the author discusses the most appropriate techniques to adopt in various settings, including: Quantization, Privacy, Noisy channels, Streaming and memory-limited devices, and Communication constraints.
Throughout the tutorial the reader is guided through the basic concepts and mathematical complexities of the topics under review. The inclusion of Exercises and a separately available Solutions manual make this book ideal to be used as part of a graduate course.