Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

Conditional Gradient Methods: From Core Principles to AI Applications offers a definitive and modern treatment of one of the most elegant and versatile algorithmic families in optimization: the Frank-Wolfe method and its many variants. Originally proposed in the 1950s, these projection-free techniques have seen a powerful resurgence, now playing a central role in machine learning, signal processing, and large-scale data science.
This comprehensive monograph unites deep theoretical insights with practical considerations, guiding readers through the foundations of constrained optimization and into cutting-edge territory, including stochastic, online, and distributed settings. With a clear narrative, rigorous proofs, and illuminating illustrations, the book demystifies adaptive variants, away-steps, and the nuances of dealing with structured convex sets. A FrankWolfe.jl Julia package that implements most of the algorithms in the book is available on a supplementary website.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
Conditional Gradient Methods: From Core Principles to AI Applications offers a definitive and modern treatment of one of the most elegant and versatile algorithmic families in optimization: the Frank-Wolfe method and its many variants. Originally proposed in the 1950s, these projection-free techniques have seen a powerful resurgence, now playing a central role in machine learning, signal processing, and large-scale data science.
This comprehensive monograph unites deep theoretical insights with practical considerations, guiding readers through the foundations of constrained optimization and into cutting-edge territory, including stochastic, online, and distributed settings. With a clear narrative, rigorous proofs, and illuminating illustrations, the book demystifies adaptive variants, away-steps, and the nuances of dealing with structured convex sets. A FrankWolfe.jl Julia package that implements most of the algorithms in the book is available on a supplementary website.