Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Electro-Optics and Dielectrics of Macromolecules and Colloids
Paperback

Electro-Optics and Dielectrics of Macromolecules and Colloids

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Some seven years before Kerr’s death, Larmor proposed that electric birefringence had its origin in the orientation of anisotropic molecules or elements within the apparently isotropic medium. The theory for this concept was formulated by Langevin. During the next half century, occasional measurements were made both to characterise the phenomenon and to evaluate the relevant physico-chemical parameters of pure liquids and molecular fluids. During the 1930-40 era, Staudinger and others demonstrated the existence in nature of giant molecules and colloidal particles. Since that time it has slowly but increasingly been realised that these big molecules or particles often have relatively large dipole moments, are generally anisotropic in structure and hence, in solution or suspension, give rise to significant electric birefringence signals. Furthermore, there have been three electronic innovations which have greatly eased the experimental measurement of the effect for such materials. These were the development of photomultiplier tubes for detection, of oscillo scope~ for display and of high voltage generators developing bursts or pulses of potential difference. The last mentioned enable the experi menter to study the Kerr effect not only for its amplitude but also in the time domain. The rates of molecular response to the switching of the electric field lead directly to information on the size and geo metry of the constituent molecules and particles in a dilute solution or suspension.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
8 March 2012
Pages
408
ISBN
9781468434996

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Some seven years before Kerr’s death, Larmor proposed that electric birefringence had its origin in the orientation of anisotropic molecules or elements within the apparently isotropic medium. The theory for this concept was formulated by Langevin. During the next half century, occasional measurements were made both to characterise the phenomenon and to evaluate the relevant physico-chemical parameters of pure liquids and molecular fluids. During the 1930-40 era, Staudinger and others demonstrated the existence in nature of giant molecules and colloidal particles. Since that time it has slowly but increasingly been realised that these big molecules or particles often have relatively large dipole moments, are generally anisotropic in structure and hence, in solution or suspension, give rise to significant electric birefringence signals. Furthermore, there have been three electronic innovations which have greatly eased the experimental measurement of the effect for such materials. These were the development of photomultiplier tubes for detection, of oscillo scope~ for display and of high voltage generators developing bursts or pulses of potential difference. The last mentioned enable the experi menter to study the Kerr effect not only for its amplitude but also in the time domain. The rates of molecular response to the switching of the electric field lead directly to information on the size and geo metry of the constituent molecules and particles in a dilute solution or suspension.

Read More
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
8 March 2012
Pages
408
ISBN
9781468434996