Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Hardback

Predictive Clustering

$353.99
Sign in or become a Readings Member to add this title to your wishlist.

This book introduces a novel paradigm for machine learning and data mining called predictive clustering, which covers a broad variety of learning tasks and offers a fresh perspective on existing techniques.

The book presents an informal introduction to predictive clustering, describing learning tasks and settings, and then continues with a formal description of the paradigm, explaining algorithms for learning predictive clustering trees and predictive clustering rules, as well as presenting the applicability of these learning techniques to a broad range of tasks. Variants of decision tree learning algorithms are also introduced. Finally, the book offers several significant applications in ecology and bio-informatics.

The book is written in a straightforward and easy-to-understand manner, aimed at varied readership, ranging from researchers with an interest in machine learning techniques to practitioners of data mining technology in the areas of ecology and bioinformatics.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
20 October 2011
Pages
240
ISBN
9781461411468

This book introduces a novel paradigm for machine learning and data mining called predictive clustering, which covers a broad variety of learning tasks and offers a fresh perspective on existing techniques.

The book presents an informal introduction to predictive clustering, describing learning tasks and settings, and then continues with a formal description of the paradigm, explaining algorithms for learning predictive clustering trees and predictive clustering rules, as well as presenting the applicability of these learning techniques to a broad range of tasks. Variants of decision tree learning algorithms are also introduced. Finally, the book offers several significant applications in ecology and bio-informatics.

The book is written in a straightforward and easy-to-understand manner, aimed at varied readership, ranging from researchers with an interest in machine learning techniques to practitioners of data mining technology in the areas of ecology and bioinformatics.

Read More
Format
Hardback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
20 October 2011
Pages
240
ISBN
9781461411468