Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Hadamard Matrix Analysis and Synthesis: With Applications to Communications and Signal/Image Processing presents the basic concepts of Sylvester’s construction of Hadamard matrices, the eigenvalue-eigenvector decompositions, along with its relationship to Fourier transforms. Relevant computational structures are included for those interested in implementing the Hadamard transform.
The 2-dimensional Hadamard transform is discussed in terms of a 1- dimensional transform. The applications presented touch on statistics, error correction coding theory, communications signaling, Boolean function analysis and synthesis, image processing, sequence theory (maximal length binary sequences, composite sequences, and Thue-Morse sequences) and signal representation. An interesting application of the Hadamard transform to images is the Naturalness Preserving Transform (NPT), which is presented. The NPT provides a way to encode an image that can be reconstructed when it is transmitted through a noisy or an unfriendly channel. The potential applications of the Hadamard transform are wide and the book samples many of the important concepts among a vast field of applications of the transform.
Hadamard Matrix Analysis and Synthesis: With Applications to Communications and Signal/Image Processing serves as an excellent reference source and may be used as a text for advanced courses on the topic.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Hadamard Matrix Analysis and Synthesis: With Applications to Communications and Signal/Image Processing presents the basic concepts of Sylvester’s construction of Hadamard matrices, the eigenvalue-eigenvector decompositions, along with its relationship to Fourier transforms. Relevant computational structures are included for those interested in implementing the Hadamard transform.
The 2-dimensional Hadamard transform is discussed in terms of a 1- dimensional transform. The applications presented touch on statistics, error correction coding theory, communications signaling, Boolean function analysis and synthesis, image processing, sequence theory (maximal length binary sequences, composite sequences, and Thue-Morse sequences) and signal representation. An interesting application of the Hadamard transform to images is the Naturalness Preserving Transform (NPT), which is presented. The NPT provides a way to encode an image that can be reconstructed when it is transmitted through a noisy or an unfriendly channel. The potential applications of the Hadamard transform are wide and the book samples many of the important concepts among a vast field of applications of the transform.
Hadamard Matrix Analysis and Synthesis: With Applications to Communications and Signal/Image Processing serves as an excellent reference source and may be used as a text for advanced courses on the topic.