Mathematical Theory of Economic Dynamics and Equilibria, V.L. Makarov,A.M. Rubinov (9781461298885) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Mathematical Theory of Economic Dynamics and Equilibria
Paperback

Mathematical Theory of Economic Dynamics and Equilibria

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book is devoted to the mathematical analysis of models of economic dynamics and equilibria. These models form an important part of mathemati cal economics. Models of economic dynamics describe the motion of an economy through time. The basic concept in the study of these models is that of a trajectory, i.e., a sequence of elements of the phase space that describe admissible (possible) development of the economy. From all trajectories, we select those that are desirable, i.e., optimal in terms of a certain criterion. The apparatus of point-set maps is the appropriate tool for the analysis of these models. The topological aspects of these maps (particularly, the Kakutani fixed-point theorem) are used to study equilibrium models as well as n-person games. To study dynamic models we use a special class of maps which, in this book, are called superlinear maps. The theory of superlinear point-set maps is, obviously, of interest in its own right. This theory is described in the first chapter. Chapters 2-4 are devoted to models of economic dynamics and present a detailed study of the properties of optimal trajectories. These properties are described in terms of theorems on characteristics (on the existence of dual prices) and turnpike theorems (theorems on asymptotic trajectories). In Chapter 5, we state and study a model of economic equilibrium. The basic idea is to establish a theorem about the existence of an equilibrium state for the Arrow-Debreu model and a certain generalization of it.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
8 November 2011
Pages
254
ISBN
9781461298885

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book is devoted to the mathematical analysis of models of economic dynamics and equilibria. These models form an important part of mathemati cal economics. Models of economic dynamics describe the motion of an economy through time. The basic concept in the study of these models is that of a trajectory, i.e., a sequence of elements of the phase space that describe admissible (possible) development of the economy. From all trajectories, we select those that are desirable, i.e., optimal in terms of a certain criterion. The apparatus of point-set maps is the appropriate tool for the analysis of these models. The topological aspects of these maps (particularly, the Kakutani fixed-point theorem) are used to study equilibrium models as well as n-person games. To study dynamic models we use a special class of maps which, in this book, are called superlinear maps. The theory of superlinear point-set maps is, obviously, of interest in its own right. This theory is described in the first chapter. Chapters 2-4 are devoted to models of economic dynamics and present a detailed study of the properties of optimal trajectories. These properties are described in terms of theorems on characteristics (on the existence of dual prices) and turnpike theorems (theorems on asymptotic trajectories). In Chapter 5, we state and study a model of economic equilibrium. The basic idea is to establish a theorem about the existence of an equilibrium state for the Arrow-Debreu model and a certain generalization of it.

Read More
Format
Paperback
Publisher
Springer-Verlag New York Inc.
Country
United States
Date
8 November 2011
Pages
254
ISBN
9781461298885