Compression Schemes for Mining Large Datasets: A Machine Learning Perspective, T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahmanya (9781447156062) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

Compression Schemes for Mining Large Datasets: A Machine Learning Perspective
Hardback

Compression Schemes for Mining Large Datasets: A Machine Learning Perspective

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features: describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Springer London Ltd
Country
United Kingdom
Date
4 December 2013
Pages
197
ISBN
9781447156062

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features: describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems.

Read More
Format
Hardback
Publisher
Springer London Ltd
Country
United Kingdom
Date
4 December 2013
Pages
197
ISBN
9781447156062