Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
While neural network control has been successfully applied in various practical applications, many important issues, such as stability, robustness, and performance, have not been extensively researched for neural adaptive systems. Motivated by the need for systematic neural control strategies for nonlinear systems, Stable Adaptive Neural Network Control offers an in-depth study of stable adaptive control designs using approximation-based techniques, and presents rigorous analysis for system stability and control performance. Both linearly parameterized and multi-layer neural networks (NN) are discussed and employed in the design of adaptive NN control systems for completeness. Stable adaptive NN control has been thoroughly investigated for several classes of nonlinear systems, including nonlinear systems in Brunovsky form, nonlinear systems in strict-feedback and pure-feedback forms, nonaffine nonlinear systems, and a class of MIMO nonlinear systems. In addition, the developed design methodologies are not only applied to typical example systems, but also to real application-oriented systems, such as the variable length pendulum system, the underactuated inverted pendulum system and nonaffine nonlinear chemical processes (CSTR).
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
While neural network control has been successfully applied in various practical applications, many important issues, such as stability, robustness, and performance, have not been extensively researched for neural adaptive systems. Motivated by the need for systematic neural control strategies for nonlinear systems, Stable Adaptive Neural Network Control offers an in-depth study of stable adaptive control designs using approximation-based techniques, and presents rigorous analysis for system stability and control performance. Both linearly parameterized and multi-layer neural networks (NN) are discussed and employed in the design of adaptive NN control systems for completeness. Stable adaptive NN control has been thoroughly investigated for several classes of nonlinear systems, including nonlinear systems in Brunovsky form, nonlinear systems in strict-feedback and pure-feedback forms, nonaffine nonlinear systems, and a class of MIMO nonlinear systems. In addition, the developed design methodologies are not only applied to typical example systems, but also to real application-oriented systems, such as the variable length pendulum system, the underactuated inverted pendulum system and nonaffine nonlinear chemical processes (CSTR).