Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This volume is devoted to the qualitative investigation of two-dimensional polynomial dynamical systems and is aimed at solving Hilbert’s Sixteenth Problem on the maximum number and relative position of limit cycles. The author presents a global bifurcation theory of such systems and suggests a new global approach to the study of limit cycle bifurcations. The obtained results can be applied to higher-dimensional dynamical systems and can be used for the global qualitative analysis of various mathematical models in mechanics, radioelectronics, in ecology and medicine.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This volume is devoted to the qualitative investigation of two-dimensional polynomial dynamical systems and is aimed at solving Hilbert’s Sixteenth Problem on the maximum number and relative position of limit cycles. The author presents a global bifurcation theory of such systems and suggests a new global approach to the study of limit cycle bifurcations. The obtained results can be applied to higher-dimensional dynamical systems and can be used for the global qualitative analysis of various mathematical models in mechanics, radioelectronics, in ecology and medicine.