Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book presents the recent development of stochastic approximation algorithms with expanding truncations based on the TS (trajectory-subsequence) method, a newly developed method for convergence analysis. This approach is so powerful that conditions used for guaranteeing convergence have been considerably weakened in comparison with those applied in the classical probability and ODE methods. The general convergence theorem is presented for sample paths and is proved in a purely deterministic way. The sample-path description of theorems is particularly convenient for applications. Convergence theory takes both observation noise and structural error of the regression function into consideration. Convergence rates, asymptotic normality and other asymptotic properties are presented as well. Applications of the developed theory to global optimization, blind channel identification, adaptive filtering, system parameter identification, adaptive stabilization and other problems arising from engineering fields are demonstrated.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book presents the recent development of stochastic approximation algorithms with expanding truncations based on the TS (trajectory-subsequence) method, a newly developed method for convergence analysis. This approach is so powerful that conditions used for guaranteeing convergence have been considerably weakened in comparison with those applied in the classical probability and ODE methods. The general convergence theorem is presented for sample paths and is proved in a purely deterministic way. The sample-path description of theorems is particularly convenient for applications. Convergence theory takes both observation noise and structural error of the regression function into consideration. Convergence rates, asymptotic normality and other asymptotic properties are presented as well. Applications of the developed theory to global optimization, blind channel identification, adaptive filtering, system parameter identification, adaptive stabilization and other problems arising from engineering fields are demonstrated.