Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This volume is concerned with a detailed description of the canonical operator method - one of the asymptotic methods of linear mathematical physics. The book is, in fact, an extension and continuation of the authors’ works [59], [60], [65]. The basic ideas are summarized in the Introduction. The book consists of two parts. In the first, the theory of the canonical operator is develop ed, whereas, in the second, many applications of the canonical operator method to concrete problems of mathematical physics are presented. The authors are pleased to express their deep gratitude to S. M. Tsidilin for his valuable comments. THE AUTHORS IX INTRODUCTION 1. Various problems of mathematical and theoretical physics involve partial differential equations with a small parameter at the highest derivative terms. For constructing approximate solutions of these equations, asymptotic methods have long been used. In recent decades there has been a renaissance period of the asymptotic methods of linear mathematical physics. The range of their applicability has expanded: the asymptotic methods have been not only continuously used in traditional branches of mathematical physics but also have had an essential impact on the development of the general theory of partial differential equations. It appeared recently that there is a unified approach to a number of problems which, at first sight, looked rather unrelated.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This volume is concerned with a detailed description of the canonical operator method - one of the asymptotic methods of linear mathematical physics. The book is, in fact, an extension and continuation of the authors’ works [59], [60], [65]. The basic ideas are summarized in the Introduction. The book consists of two parts. In the first, the theory of the canonical operator is develop ed, whereas, in the second, many applications of the canonical operator method to concrete problems of mathematical physics are presented. The authors are pleased to express their deep gratitude to S. M. Tsidilin for his valuable comments. THE AUTHORS IX INTRODUCTION 1. Various problems of mathematical and theoretical physics involve partial differential equations with a small parameter at the highest derivative terms. For constructing approximate solutions of these equations, asymptotic methods have long been used. In recent decades there has been a renaissance period of the asymptotic methods of linear mathematical physics. The range of their applicability has expanded: the asymptotic methods have been not only continuously used in traditional branches of mathematical physics but also have had an essential impact on the development of the general theory of partial differential equations. It appeared recently that there is a unified approach to a number of problems which, at first sight, looked rather unrelated.