Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This doctoral thesis is a contribution to the analysis of the combinatorics of arbitrarily coloured open Jacobi diagrams and their relationship to Vassiliev invariants. We examine J.~Kneissler's five ladder relations and state them in a much more precise way. We also analyse their role in the space of colored open Jacobi diagrams. Then, we establish a sort of machinery - a language together with a toolbox of lemmata, theorems and definitions to build, manipulate and analyse coloured open Jacobi diagrams. With this, we examine the role of generalised Pont-Neuf diagrams and caterpillar diagrams. Lastly we transfer this to the uncolored case, which allows us to show that the space of open Jacobi diagrams up to first Betti number five is already contained in the module of caterpillar diagrams, considered as a module of a certain subset of Vogels' algebra. This means that Vassiliev invariants associated to these degrees do not detect knot orientation.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This doctoral thesis is a contribution to the analysis of the combinatorics of arbitrarily coloured open Jacobi diagrams and their relationship to Vassiliev invariants. We examine J.~Kneissler's five ladder relations and state them in a much more precise way. We also analyse their role in the space of colored open Jacobi diagrams. Then, we establish a sort of machinery - a language together with a toolbox of lemmata, theorems and definitions to build, manipulate and analyse coloured open Jacobi diagrams. With this, we examine the role of generalised Pont-Neuf diagrams and caterpillar diagrams. Lastly we transfer this to the uncolored case, which allows us to show that the space of open Jacobi diagrams up to first Betti number five is already contained in the module of caterpillar diagrams, considered as a module of a certain subset of Vogels' algebra. This means that Vassiliev invariants associated to these degrees do not detect knot orientation.