Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Statistical mechanics is hugely successful when applied to physical systems at thermodynamic equilibrium; however, most natural phenomena occur in nonequilibrium conditions and more sophisticated techniques are required to address this increased complexity. This second edition presents a comprehensive overview of nonequilibrium statistical physics, covering essential topics such as Langevin equations, Levy processes, fluctuation relations, transport theory, directed percolation, kinetic roughening, and pattern formation. The first part of the book introduces the underlying theory of nonequilibrium physics, the second part develops key aspects of nonequilibrium phase transitions, and the final part covers modern applications. A pedagogical approach has been adopted for the benefit of graduate students and instructors, with clear language and detailed figures used to explain the relevant models and experimental results. With the inclusion of original material and organizational changes throughout the book, this updated edition will be an essential guide for graduate students and researchers in nonequilibrium thermodynamics.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Statistical mechanics is hugely successful when applied to physical systems at thermodynamic equilibrium; however, most natural phenomena occur in nonequilibrium conditions and more sophisticated techniques are required to address this increased complexity. This second edition presents a comprehensive overview of nonequilibrium statistical physics, covering essential topics such as Langevin equations, Levy processes, fluctuation relations, transport theory, directed percolation, kinetic roughening, and pattern formation. The first part of the book introduces the underlying theory of nonequilibrium physics, the second part develops key aspects of nonequilibrium phase transitions, and the final part covers modern applications. A pedagogical approach has been adopted for the benefit of graduate students and instructors, with clear language and detailed figures used to explain the relevant models and experimental results. With the inclusion of original material and organizational changes throughout the book, this updated edition will be an essential guide for graduate students and researchers in nonequilibrium thermodynamics.