Effectiveness of Shot Peening in Suppressing Fatigue Cracking at Non-Metallic Inclusions in Udimet, (9781289254483) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

Effectiveness of Shot Peening in Suppressing Fatigue Cracking at Non-Metallic Inclusions in Udimet
Paperback

Effectiveness of Shot Peening in Suppressing Fatigue Cracking at Non-Metallic Inclusions in Udimet

$45.99
Sign in or become a Readings Member to add this title to your wishlist.

The fatigue lives of modern powder metallurgy disk alloys can be reduced by over an order of magnitude by surface cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens at 427 and 650 C in peened and unpeened conditions. Analyses were performed to compare the low cycle fatigue lives and failure initiation sites as a function of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. The inclusions could reduce fatigue life by up to 100X. Large inclusions had the greatest effect on life in tests at low strain ranges and high strain ratios. Shot peening can be used to improve life in these conditions by reducing the most severe effects of inclusions.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Bibliogov
Country
United States
Date
29 July 2013
Pages
24
ISBN
9781289254483

The fatigue lives of modern powder metallurgy disk alloys can be reduced by over an order of magnitude by surface cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens at 427 and 650 C in peened and unpeened conditions. Analyses were performed to compare the low cycle fatigue lives and failure initiation sites as a function of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. The inclusions could reduce fatigue life by up to 100X. Large inclusions had the greatest effect on life in tests at low strain ranges and high strain ratios. Shot peening can be used to improve life in these conditions by reducing the most severe effects of inclusions.

Read More
Format
Paperback
Publisher
Bibliogov
Country
United States
Date
29 July 2013
Pages
24
ISBN
9781289254483