Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
To sustain the United States current affluence and strength, the U.S. Government has encouraged energy conservation through executive orders, federal and local laws, and consumer education. A substantial reduction in U.S. energy consumption could be realized by using geothermal heat pumps to heat and cool buildings throughout the U.S., though initial installation cost are a deterrent. This thesis uses Monte Carlo simulation to predict energy consumption, life cycle cost and payback period for the vertical closed-loop ground source heat pump (GSHP)relative to conventional heating ventilation and air conditioning (HVAC) systems: airsource heat pumps (ASHP), air-cooled air conditioning with either natural gas, fuel oil, or liquid petroleum gas furnaces, or with electrical resistance heating. The Monte Carlo simulation is performed for a standard commercial office building within each of the 48 continental states. Regardless of the conventional HVAC system chosen, the simulation shows that for each state the GSHP has the highest probability of using less energy and having a lower operating and life cycle cost than conventional HVAC systems; however, initial installation cost are typically twice that of conventional HVAC systems and payback periods vary greatly depending on site conditions.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
To sustain the United States current affluence and strength, the U.S. Government has encouraged energy conservation through executive orders, federal and local laws, and consumer education. A substantial reduction in U.S. energy consumption could be realized by using geothermal heat pumps to heat and cool buildings throughout the U.S., though initial installation cost are a deterrent. This thesis uses Monte Carlo simulation to predict energy consumption, life cycle cost and payback period for the vertical closed-loop ground source heat pump (GSHP)relative to conventional heating ventilation and air conditioning (HVAC) systems: airsource heat pumps (ASHP), air-cooled air conditioning with either natural gas, fuel oil, or liquid petroleum gas furnaces, or with electrical resistance heating. The Monte Carlo simulation is performed for a standard commercial office building within each of the 48 continental states. Regardless of the conventional HVAC system chosen, the simulation shows that for each state the GSHP has the highest probability of using less energy and having a lower operating and life cycle cost than conventional HVAC systems; however, initial installation cost are typically twice that of conventional HVAC systems and payback periods vary greatly depending on site conditions.