Developing Cyberspace Data Understanding: Using CRISP-DM for Host-Based IDS Feature Mining, Joseph R Erskine (9781288331628) — Readings Books
Developing Cyberspace Data Understanding: Using CRISP-DM for Host-Based IDS Feature Mining
Paperback

Developing Cyberspace Data Understanding: Using CRISP-DM for Host-Based IDS Feature Mining

$112.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Current intrusion detection systems generate a large number of specific alerts, but do not provide actionable information. Many times, these alerts must be analyzed by a network defender, a time consuming and tedious task which can occur hours or days after an attack occurs. Improved understanding of the cyberspace domain can lead to great advancements in Cyberspace situational awareness research and development. This thesis applies the Cross Industry Standard Process for Data Mining (CRISP-DM) to develop an understanding about a host system under attack. Data is generated by launching scans and exploits at a machine outfitted with a set of host-based data collectors. Through knowledge discovery, features are identified within the data collected which can be used to enhance host-based intrusion detection. By discovering relationships between the data collected and the events, human understanding of the activity is shown.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Biblioscholar
Date
21 November 2012
Pages
140
ISBN
9781288331628

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Current intrusion detection systems generate a large number of specific alerts, but do not provide actionable information. Many times, these alerts must be analyzed by a network defender, a time consuming and tedious task which can occur hours or days after an attack occurs. Improved understanding of the cyberspace domain can lead to great advancements in Cyberspace situational awareness research and development. This thesis applies the Cross Industry Standard Process for Data Mining (CRISP-DM) to develop an understanding about a host system under attack. Data is generated by launching scans and exploits at a machine outfitted with a set of host-based data collectors. Through knowledge discovery, features are identified within the data collected which can be used to enhance host-based intrusion detection. By discovering relationships between the data collected and the events, human understanding of the activity is shown.

Read More
Format
Paperback
Publisher
Biblioscholar
Date
21 November 2012
Pages
140
ISBN
9781288331628