Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Dynamic Supersonic Base Store Ejection Simulation Using Beggar
Paperback

Dynamic Supersonic Base Store Ejection Simulation Using Beggar

$112.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Static and dynamic conditions throughout various aft supersonic store separation events are examined using the Beggar Computational Fluid Dynamics (CFD) code from Air Force SEEK Eagle Office at Eglin Air Force Base, FL. An 8.9o half angle sphere cone is used for the carrier vehicle with an identically shaped store stowed within a hollow compartment in the aft section of the carrier body. Dynamic store separation simulations are implemented at a free-stream Mach of 2.9 with a Reynolds number of Re = 6.9x106/m referenced against carrier base diameter. Analysis covers multiple dynamic separation events along with studies of the carrier/store body at various static conditions and configurations. Dynamic store separation simulations show that a successful store separation is more likely to occur at high angles of attack and high flight angles. When a low angle of attack and low flight angle are combined with inadequate ejection forces, it appears that the carrier and store will eventually impact eachother due to the tendency of the store to remain within the low drag wake region of the carrier.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Biblioscholar
Date
1 November 2012
Pages
152
ISBN
9781288330102

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Static and dynamic conditions throughout various aft supersonic store separation events are examined using the Beggar Computational Fluid Dynamics (CFD) code from Air Force SEEK Eagle Office at Eglin Air Force Base, FL. An 8.9o half angle sphere cone is used for the carrier vehicle with an identically shaped store stowed within a hollow compartment in the aft section of the carrier body. Dynamic store separation simulations are implemented at a free-stream Mach of 2.9 with a Reynolds number of Re = 6.9x106/m referenced against carrier base diameter. Analysis covers multiple dynamic separation events along with studies of the carrier/store body at various static conditions and configurations. Dynamic store separation simulations show that a successful store separation is more likely to occur at high angles of attack and high flight angles. When a low angle of attack and low flight angle are combined with inadequate ejection forces, it appears that the carrier and store will eventually impact eachother due to the tendency of the store to remain within the low drag wake region of the carrier.

Read More
Format
Paperback
Publisher
Biblioscholar
Date
1 November 2012
Pages
152
ISBN
9781288330102