Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Using Predictive Rendering as a Vision-Aided Technique for Autonomous Aerial Refueling
Paperback

Using Predictive Rendering as a Vision-Aided Technique for Autonomous Aerial Refueling

$112.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This research effort seeks to characterize a vision-aided approach for an Unmanned Aerial System (UAS) to autonomously determine relative position to another aircraft in a formation, speci cally to address the autonomous aerial refueling problem. A system consisting of a monocular digital camera coupled with inertial sensors onboard the UAS is analyzed for feasibility of using this vision-aided approach. A three-dimensional rendering of the tanker aircraft is used to generate predicted images of the tanker. A rigorous error model is developed to model the relative dynamics. To quantify the errors between the predicted and true images, an image update function is developed using perturbation techniques. Based on this residual measurement and the inertial/dynamics propagation, an Extended Kalman Filter (EKF) is used to predict the relative position and orientation of the tanker from the receiver aircraft. The EKF is simulated through various formation positions during typical aerial refueling operations. Various grades of inertial sensors are simulated to analyze the system’s ability to accurately and robustly track the relative position between the two aircraft.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Biblioscholar
Date
17 October 2012
Pages
94
ISBN
9781249827733

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This research effort seeks to characterize a vision-aided approach for an Unmanned Aerial System (UAS) to autonomously determine relative position to another aircraft in a formation, speci cally to address the autonomous aerial refueling problem. A system consisting of a monocular digital camera coupled with inertial sensors onboard the UAS is analyzed for feasibility of using this vision-aided approach. A three-dimensional rendering of the tanker aircraft is used to generate predicted images of the tanker. A rigorous error model is developed to model the relative dynamics. To quantify the errors between the predicted and true images, an image update function is developed using perturbation techniques. Based on this residual measurement and the inertial/dynamics propagation, an Extended Kalman Filter (EKF) is used to predict the relative position and orientation of the tanker from the receiver aircraft. The EKF is simulated through various formation positions during typical aerial refueling operations. Various grades of inertial sensors are simulated to analyze the system’s ability to accurately and robustly track the relative position between the two aircraft.

Read More
Format
Paperback
Publisher
Biblioscholar
Date
17 October 2012
Pages
94
ISBN
9781249827733