Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Creating A Memory of Causal Relationships: An Integration of Empirical and Explanation-based Learning Methods
Paperback

Creating A Memory of Causal Relationships: An Integration of Empirical and Explanation-based Learning Methods

$241.99
Sign in or become a Readings Member to add this title to your wishlist.

This book presents a theory of learning new causal relationships by making use of perceived regularities in the environment, general knowledge of causality, and existing causal knowledge. Integrating ideas from the psychology of causation and machine learning, the author introduces a new learning procedure called theory-driven learning that uses abstract knowledge of causality to guide the induction process.

Known as OCCAM, the system uses theory-driven learning when new experiences conform to common patterns of causal relationships, empirical learning to learn from novel experiences, and explanation-based learning when there is sufficient existing knowledge to explain why a new outcome occurred. Together these learning methods construct a hierarchical organized memory of causal relationships. As such, OCCAM is the first learning system with the ability to acquire, via empirical learning, the background knowledge required for explanation-based learning.

Please note: This program runs on common lisp.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
17 October 2016
Pages
360
ISBN
9781138966918

This book presents a theory of learning new causal relationships by making use of perceived regularities in the environment, general knowledge of causality, and existing causal knowledge. Integrating ideas from the psychology of causation and machine learning, the author introduces a new learning procedure called theory-driven learning that uses abstract knowledge of causality to guide the induction process.

Known as OCCAM, the system uses theory-driven learning when new experiences conform to common patterns of causal relationships, empirical learning to learn from novel experiences, and explanation-based learning when there is sufficient existing knowledge to explain why a new outcome occurred. Together these learning methods construct a hierarchical organized memory of causal relationships. As such, OCCAM is the first learning system with the ability to acquire, via empirical learning, the background knowledge required for explanation-based learning.

Please note: This program runs on common lisp.

Read More
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
17 October 2016
Pages
360
ISBN
9781138966918