Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

Thermites, which are generally considered to be reactive mixtures of powdered metals and metal oxides, are an important subset of energetic materials. The underlying thermodynamic properties of a given mixture dictate whether it may undergo a self-sustaining reaction, liberating heat in the process. Thermodynamic information in the existing scientific literature regarding thermitic combinations is scattered and incomplete. Currently, a comprehensive overview of this nature would be of great use to those working in the areas of pyrotechnics, pyrometallurgy, high-temperature chemistry, and materials science. Thermitic Thermodynamics solves this problem by describing the results of calculations on over 800 combinations of metal, metalloid, and metal oxide reactants.
Other features include:
A first-of-its-kind adiabatic survey of binary thermitic reactions
Provides an overview of key trends in exothermic metal-metal oxide reactivity
Describes the role of non-oxide product formation in thermitic systems
Explains how to interpret the results of thermochemical calculations effectively
An invaluable resource, this book provides an accessible introduction for students and is also an enduring guide for professionals.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
Thermites, which are generally considered to be reactive mixtures of powdered metals and metal oxides, are an important subset of energetic materials. The underlying thermodynamic properties of a given mixture dictate whether it may undergo a self-sustaining reaction, liberating heat in the process. Thermodynamic information in the existing scientific literature regarding thermitic combinations is scattered and incomplete. Currently, a comprehensive overview of this nature would be of great use to those working in the areas of pyrotechnics, pyrometallurgy, high-temperature chemistry, and materials science. Thermitic Thermodynamics solves this problem by describing the results of calculations on over 800 combinations of metal, metalloid, and metal oxide reactants.
Other features include:
A first-of-its-kind adiabatic survey of binary thermitic reactions
Provides an overview of key trends in exothermic metal-metal oxide reactivity
Describes the role of non-oxide product formation in thermitic systems
Explains how to interpret the results of thermochemical calculations effectively
An invaluable resource, this book provides an accessible introduction for students and is also an enduring guide for professionals.