Prestressed Concrete-Lined Pressure Tunnels: Towards Improved Safety and Economical Design, T.D.Y.F. Simanjuntak (9781138028531) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Prestressed Concrete-Lined Pressure Tunnels: Towards Improved Safety and Economical Design
Paperback

Prestressed Concrete-Lined Pressure Tunnels: Towards Improved Safety and Economical Design

$319.99
Sign in or become a Readings Member to add this title to your wishlist.

Hydropower can be a source of sustainable energy, provided environmental considerations are taken into account and economic aspects of hydropower design are appropriately addressed. Using concrete-lined pressure tunnels instead of steel pipes may be economically attractive but may also have limitations due to the low tensile strength of concrete.

Cracking in concrete tunnel linings can lead to loss of energy production, extensive repairs, and even accidents. One of the techniques available to improve the bearing capacity of pressure tunnels is through prestressing the concrete lining by grouting the circumferential gap between the concrete lining and the rock mass at high pressure. A classical approach to determine the bearing capacity of such tunnels is based on the theory of elasticity, assuming impervious concrete. In this research, a new concept is introduced to assess the effect of seepage on the bearing capacity of pressure tunnels. Also, an innovative approach is proposed to explore the effects of the in-situ stress ratio on the lining performance. Distinction is made based on whether the rock mass behaves as an elasto-plastic isotropic, or elastic anisotropic material. Furthermore, a simplified method is introduced to quantify seepage associated with cracks around the tunnel, which is useful for assessing tunnel stability.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
28 July 2015
Pages
148
ISBN
9781138028531

Hydropower can be a source of sustainable energy, provided environmental considerations are taken into account and economic aspects of hydropower design are appropriately addressed. Using concrete-lined pressure tunnels instead of steel pipes may be economically attractive but may also have limitations due to the low tensile strength of concrete.

Cracking in concrete tunnel linings can lead to loss of energy production, extensive repairs, and even accidents. One of the techniques available to improve the bearing capacity of pressure tunnels is through prestressing the concrete lining by grouting the circumferential gap between the concrete lining and the rock mass at high pressure. A classical approach to determine the bearing capacity of such tunnels is based on the theory of elasticity, assuming impervious concrete. In this research, a new concept is introduced to assess the effect of seepage on the bearing capacity of pressure tunnels. Also, an innovative approach is proposed to explore the effects of the in-situ stress ratio on the lining performance. Distinction is made based on whether the rock mass behaves as an elasto-plastic isotropic, or elastic anisotropic material. Furthermore, a simplified method is introduced to quantify seepage associated with cracks around the tunnel, which is useful for assessing tunnel stability.

Read More
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
28 July 2015
Pages
148
ISBN
9781138028531