Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
In creatures ranging from birds to fish to wildebeest, we observe the collective and coherent motion of large numbers of organisms, known as 'flocking.' John Toner, one of the founders of the field of active matter, uses the hydrodynamic theory of flocking to explain why a crowd of people can all walk, but not point, in the same direction. Assuming a basic undergraduate-level understanding of statistical mechanics, the text introduces readers to dry active matter and describes the current status of this rapidly developing field. Through the application of powerful techniques from theoretical condensed matter physics, such as hydrodynamic theories, the gradient expansion, and the renormalization group, readers are given the knowledge and tools to explore and understand this exciting field of research. This book will be valuable to graduate students and researchers in physics, mathematics, and biology with an interest in the hydrodynamic theory of flocking.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
In creatures ranging from birds to fish to wildebeest, we observe the collective and coherent motion of large numbers of organisms, known as 'flocking.' John Toner, one of the founders of the field of active matter, uses the hydrodynamic theory of flocking to explain why a crowd of people can all walk, but not point, in the same direction. Assuming a basic undergraduate-level understanding of statistical mechanics, the text introduces readers to dry active matter and describes the current status of this rapidly developing field. Through the application of powerful techniques from theoretical condensed matter physics, such as hydrodynamic theories, the gradient expansion, and the renormalization group, readers are given the knowledge and tools to explore and understand this exciting field of research. This book will be valuable to graduate students and researchers in physics, mathematics, and biology with an interest in the hydrodynamic theory of flocking.