Initialization and Diversity in Optimization Algorithms, Diego Oliva, Marco Antonio Perez Cisneros, Bernardo Morales-Castaneda, Mario A. Navarro Velazquez (9781032695815) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

Initialization and Diversity in Optimization Algorithms
Hardback

Initialization and Diversity in Optimization Algorithms

$294.00
Sign in or become a Readings Member to add this title to your wishlist.

Designing new algorithms in swarm intelligence is a complex undertaking. Two critical factors have been seen to have a direct correlation with positive results. First is initialization, which serves as the initial step for all swarm intelligence techniques. Candidate solutions are generated to form the initial population, which are subsequently modified during the iterative process. A well-initialized population increases the algorithm's chances of avoiding local optima and finding the global optimum in fewer iterations. Although random distributions are commonly used for initialization, there are various ways to initialize the population elements.

Maintaining diversity among the population elements throughout the iterative process is also essential. This diversity facilitates a more thorough and efficient exploration of the search space. In swarm intelligence algorithms, there are multiple methods to measure diversity, each with its own advantages and disadvantages.

This book presents the theory behind the initialization process and the different mechanisms. Additionally, it includes a comparative study of various diversity indicators. It explores different methodologies to compute its value and explains how it can be incorporated as a mechanism for deciding when to apply operators during the optimization process. Multiple examples are provided in the book using two classical algorithms: Differential Evolution and Particle Swarm Optimization. It includes MATLAB (R) code and offers several exercises that readers can use for experimentation and design purposes.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
19 February 2026
Pages
226
ISBN
9781032695815

Designing new algorithms in swarm intelligence is a complex undertaking. Two critical factors have been seen to have a direct correlation with positive results. First is initialization, which serves as the initial step for all swarm intelligence techniques. Candidate solutions are generated to form the initial population, which are subsequently modified during the iterative process. A well-initialized population increases the algorithm's chances of avoiding local optima and finding the global optimum in fewer iterations. Although random distributions are commonly used for initialization, there are various ways to initialize the population elements.

Maintaining diversity among the population elements throughout the iterative process is also essential. This diversity facilitates a more thorough and efficient exploration of the search space. In swarm intelligence algorithms, there are multiple methods to measure diversity, each with its own advantages and disadvantages.

This book presents the theory behind the initialization process and the different mechanisms. Additionally, it includes a comparative study of various diversity indicators. It explores different methodologies to compute its value and explains how it can be incorporated as a mechanism for deciding when to apply operators during the optimization process. Multiple examples are provided in the book using two classical algorithms: Differential Evolution and Particle Swarm Optimization. It includes MATLAB (R) code and offers several exercises that readers can use for experimentation and design purposes.

Read More
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
19 February 2026
Pages
226
ISBN
9781032695815