Bayesian Statistical Methods, Brian J. Reich, Sujit K. Ghosh (9781032486321) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

In Victoria? Order in-stock items by Sunday 14 December to get your gifts by Christmas! Or find the deadline for your state here.

Bayesian Statistical Methods
Hardback

Bayesian Statistical Methods

$189.00
Sign in or become a Readings Member to add this title to your wishlist.

Bayesian Statistical Methods: With Applications to Machine Learning provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. Compared to others, this book is more focused on Bayesian methods applied routinely in practice, including multiple linear regression, mixed effects models and generalized linear models. This second edition includes a new chapter on Bayesian machine learning methods to handle large and complex datasets and several new applications to illustrate the benefits of the Bayesian approach in terms of uncertainty quantification.

Readers familiar with only introductory statistics will find this book accessible, as it includes many worked examples with complete R code, and comparisons are presented with analogous frequentist procedures. The book can be used as a one-semester course for advanced undergraduate and graduate students and can be used in courses comprising undergraduate statistics majors, as well as non-statistics graduate students from other disciplines such as engineering, ecology and psychology. In addition to thorough treatment of the basic concepts of Bayesian inferential methods, the book covers many general topics:

Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) sampling Model-comparison and goodness-of-fit measures, including sensitivity to priors.

To illustrate the flexibility of the Bayesian approaches for complex data structures, the latter chapters provide case studies covering advanced topics:

Handling of missing and censored data Priors for high-dimensional regression models Machine learning models including Bayesian adaptive regression trees and deep learning Computational techniques for large datasets Frequentist properties of Bayesian methods.

The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets and complete data analyses is made available on the book's website.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
2 February 2026
Pages
348
ISBN
9781032486321

Bayesian Statistical Methods: With Applications to Machine Learning provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. Compared to others, this book is more focused on Bayesian methods applied routinely in practice, including multiple linear regression, mixed effects models and generalized linear models. This second edition includes a new chapter on Bayesian machine learning methods to handle large and complex datasets and several new applications to illustrate the benefits of the Bayesian approach in terms of uncertainty quantification.

Readers familiar with only introductory statistics will find this book accessible, as it includes many worked examples with complete R code, and comparisons are presented with analogous frequentist procedures. The book can be used as a one-semester course for advanced undergraduate and graduate students and can be used in courses comprising undergraduate statistics majors, as well as non-statistics graduate students from other disciplines such as engineering, ecology and psychology. In addition to thorough treatment of the basic concepts of Bayesian inferential methods, the book covers many general topics:

Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) sampling Model-comparison and goodness-of-fit measures, including sensitivity to priors.

To illustrate the flexibility of the Bayesian approaches for complex data structures, the latter chapters provide case studies covering advanced topics:

Handling of missing and censored data Priors for high-dimensional regression models Machine learning models including Bayesian adaptive regression trees and deep learning Computational techniques for large datasets Frequentist properties of Bayesian methods.

The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets and complete data analyses is made available on the book's website.

Read More
Format
Hardback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
2 February 2026
Pages
348
ISBN
9781032486321