Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Newtonian Dynamics
Paperback

Newtonian Dynamics

$124.99
Sign in or become a Readings Member to add this title to your wishlist.

This textbook provides a comprehensive review of Newtonian dynamics at a level suitable for undergraduate physics students. It demonstrates that Newton's three laws of motion, combined with a few simple force laws, not only can describe the motions of everyday objects observed on the surface of the Earth, but can also account for the motions of celestial objects seen in the sky. It helps bridge the problematic transition between elementary physics courses and upper-division physics courses. The book starts off at a level suitable for undergraduate (freshman) physics students and very gradually increases, until, toward the end, it approaches (but does not quite reach) a level characteristic of a graduate (senior) physics course.

Each chapter of the book ends with a large number of numerical and analytical exercises and, in all appropriate cases, the final answers to the exercises are specified. The large number of exercises will allow students to accurately test their understanding of the material presented in the book, ideal for students who are self-studying or are taking classes remotely.

Key Features:

Provides a brief and accessible introduction to a complex topic

Contains a more thorough treatment of the motions of heavenly bodies than conventional elementary mechanics texts

Provides a wealth of end-of-chapter exercises to test understanding

Richard Fitzpatrick is a Professor of physics at the University of Texas at Austin, USA, where he has been a faculty member since 1994. He is a member of the Royal Astronomical Society, a fellow of the American Physical Society, and the author of several textbooks.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
29 January 2024
Pages
270
ISBN
9781032056661

This textbook provides a comprehensive review of Newtonian dynamics at a level suitable for undergraduate physics students. It demonstrates that Newton's three laws of motion, combined with a few simple force laws, not only can describe the motions of everyday objects observed on the surface of the Earth, but can also account for the motions of celestial objects seen in the sky. It helps bridge the problematic transition between elementary physics courses and upper-division physics courses. The book starts off at a level suitable for undergraduate (freshman) physics students and very gradually increases, until, toward the end, it approaches (but does not quite reach) a level characteristic of a graduate (senior) physics course.

Each chapter of the book ends with a large number of numerical and analytical exercises and, in all appropriate cases, the final answers to the exercises are specified. The large number of exercises will allow students to accurately test their understanding of the material presented in the book, ideal for students who are self-studying or are taking classes remotely.

Key Features:

Provides a brief and accessible introduction to a complex topic

Contains a more thorough treatment of the motions of heavenly bodies than conventional elementary mechanics texts

Provides a wealth of end-of-chapter exercises to test understanding

Richard Fitzpatrick is a Professor of physics at the University of Texas at Austin, USA, where he has been a faculty member since 1994. He is a member of the Royal Astronomical Society, a fellow of the American Physical Society, and the author of several textbooks.

Read More
Format
Paperback
Publisher
Taylor & Francis Ltd
Country
United Kingdom
Date
29 January 2024
Pages
270
ISBN
9781032056661