Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Performance of Imaging Laser Radar in Rain and Fog
Hardback

Performance of Imaging Laser Radar in Rain and Fog

$96.99
Sign in or become a Readings Member to add this title to your wishlist.

The Air Force is currently developing imaging laser radar systems (ladar) for use on precision guided munitions and other imaging systems. Scientists at Eglin Air Force Base, in conjunction with Wright Laboratories, are testing a 1.06-?m wavelength ladar system and need to understand the weather effects on the ladar images. As the laser beam propagates through the atmosphere, fog droplets and raindrops can cause image degradation, and these image degradations are manifested as either dropouts or false returns. An analysis of the dropouts and false returns helped to quantify the performance of the system in adverse weather conditions. Statistical analysis of the images showed non-linear relationships existed between variables, plus graphical analysis demonstrated the behavior of the dropouts and false returns with changing weather conditions. Statistical control charts identified the weather as a significant influence on the quality of the ladar images. By focusing on the false return data, a study of mean free path and the survival equation was accomplished. The mean free path was derived from the rainfall rate, and this mean free path was used in the survival equation to calculate an expected number of false returns for an image. This work led to the hypothesis that raindrops with a diameter of 3.0 mm and larger were causing the false returns seen in the images. However, further analysis revealed that a 3.0-mm raindrop was not capable of scattering enough energy to be detected by the system. It was then hypothesized that the system detector was also picking up solar spectrum energy scattered by raindrops, and that this detector was unable to distinguish between solar energy and laser energy scattered by raindrops.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
120
ISBN
9781025138732

The Air Force is currently developing imaging laser radar systems (ladar) for use on precision guided munitions and other imaging systems. Scientists at Eglin Air Force Base, in conjunction with Wright Laboratories, are testing a 1.06-?m wavelength ladar system and need to understand the weather effects on the ladar images. As the laser beam propagates through the atmosphere, fog droplets and raindrops can cause image degradation, and these image degradations are manifested as either dropouts or false returns. An analysis of the dropouts and false returns helped to quantify the performance of the system in adverse weather conditions. Statistical analysis of the images showed non-linear relationships existed between variables, plus graphical analysis demonstrated the behavior of the dropouts and false returns with changing weather conditions. Statistical control charts identified the weather as a significant influence on the quality of the ladar images. By focusing on the false return data, a study of mean free path and the survival equation was accomplished. The mean free path was derived from the rainfall rate, and this mean free path was used in the survival equation to calculate an expected number of false returns for an image. This work led to the hypothesis that raindrops with a diameter of 3.0 mm and larger were causing the false returns seen in the images. However, further analysis revealed that a 3.0-mm raindrop was not capable of scattering enough energy to be detected by the system. It was then hypothesized that the system detector was also picking up solar spectrum energy scattered by raindrops, and that this detector was unable to distinguish between solar energy and laser energy scattered by raindrops.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
120
ISBN
9781025138732