The AFIT MEMS Interferometric Gyroscope, Jeremy P Stringer (9781025134123) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

The AFIT MEMS Interferometric Gyroscope
Hardback

The AFIT MEMS Interferometric Gyroscope

$98.99
Sign in or become a Readings Member to add this title to your wishlist.

With the invention of Micro Electro-Mechanical Systems (MEMS) it has become possible to fabricate micro-inertial sensors. These new sensors have application in creating autonomous guided weapons systems. New technologies like Micro Unmanned Aerial Vehicles (UAVs), which cannot use conventional inertial sensors, rely on technologies like micro-inertial sensors to operate. Also, such sensors have the capability to reduce both power and space consumption on conventional aircraft. This technology is not yet mature, and current micro-inertial sensors do not have the accuracy required for highly precise navigation. To try to increase the accuracy of micro-inertial sensors, researchers are turning toward micro-optical gyroscopes. Creating a working micro-optical gyroscope is a difficult proposition as their small size precludes micro-optical gyroscopes from having large enough path lengths to sense useful rotation rates. Techniques need to be developed to create micro-optical gyroscopes with path lengths long enough to sense navigation grade rotation rates. This research proposes a new type of MEMS optical gyroscope. The device, called the AFIT MiG is an open loop Sagnac interferometer on a MEMS die. Mirrors are placed on the die to spiral light inward from the outside to the center of the die thereby increasing the optical pathlength of the device. When the AFIT MiG was simulated using flight profiles generated in MATLAB, the optical path length of the device was long enough to measure rotation rates, which were greater in strength than the noise inherent in the measurement.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
154
ISBN
9781025134123

With the invention of Micro Electro-Mechanical Systems (MEMS) it has become possible to fabricate micro-inertial sensors. These new sensors have application in creating autonomous guided weapons systems. New technologies like Micro Unmanned Aerial Vehicles (UAVs), which cannot use conventional inertial sensors, rely on technologies like micro-inertial sensors to operate. Also, such sensors have the capability to reduce both power and space consumption on conventional aircraft. This technology is not yet mature, and current micro-inertial sensors do not have the accuracy required for highly precise navigation. To try to increase the accuracy of micro-inertial sensors, researchers are turning toward micro-optical gyroscopes. Creating a working micro-optical gyroscope is a difficult proposition as their small size precludes micro-optical gyroscopes from having large enough path lengths to sense useful rotation rates. Techniques need to be developed to create micro-optical gyroscopes with path lengths long enough to sense navigation grade rotation rates. This research proposes a new type of MEMS optical gyroscope. The device, called the AFIT MiG is an open loop Sagnac interferometer on a MEMS die. Mirrors are placed on the die to spiral light inward from the outside to the center of the die thereby increasing the optical pathlength of the device. When the AFIT MiG was simulated using flight profiles generated in MATLAB, the optical path length of the device was long enough to measure rotation rates, which were greater in strength than the noise inherent in the measurement.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
154
ISBN
9781025134123