Application of KAM Theorem to Earth Orbiting Satellites, Bryan D Little (9781025127996) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

Application of KAM Theorem to Earth Orbiting Satellites
Hardback

Application of KAM Theorem to Earth Orbiting Satellites

$92.99
Sign in or become a Readings Member to add this title to your wishlist.

An orbit that lies on a Kolmogorov, Arnold, and Moser (KAM) Torus will remain on that torus until and unless it experiences a force that causes it to leave the torus. Earth satellites that are subject only to the Earth's gravity field may lie on such KAM tori. Analyzing on orbit satellite position data should allow for the identification of the fundamental frequencies needed to define the KAM tori for modeling Earth satellite orbits. KAM Tori are created for the Gravity Recovery and Climate Experience (GRACE) and Jason-1 satellites to model their orbital motion. Precise position data for the satellites is analyzed using a modified Laskar frequency algorithm to determine the fundamental frequencies of the orbits. The fundamental frequencies along with a set of Fourier coefficients completely describe the tori. These tori are then compared to the precise orbital position data for the satellites to determine how well they model the orbits. The KAM torus created for the Jason-1 satellite is able to represent the position of the satellites to within 1 km.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
62
ISBN
9781025127996

An orbit that lies on a Kolmogorov, Arnold, and Moser (KAM) Torus will remain on that torus until and unless it experiences a force that causes it to leave the torus. Earth satellites that are subject only to the Earth's gravity field may lie on such KAM tori. Analyzing on orbit satellite position data should allow for the identification of the fundamental frequencies needed to define the KAM tori for modeling Earth satellite orbits. KAM Tori are created for the Gravity Recovery and Climate Experience (GRACE) and Jason-1 satellites to model their orbital motion. Precise position data for the satellites is analyzed using a modified Laskar frequency algorithm to determine the fundamental frequencies of the orbits. The fundamental frequencies along with a set of Fourier coefficients completely describe the tori. These tori are then compared to the precise orbital position data for the satellites to determine how well they model the orbits. The KAM torus created for the Jason-1 satellite is able to represent the position of the satellites to within 1 km.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
62
ISBN
9781025127996