Robustness of Multiple Clustering Algorithms on Hyperspectral Images, Jason P Williams (9781025126227) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

We can't guarantee delivery by Christmas, but there's still time to get a great gift! Visit one of our shops or buy a digital gift card.

Robustness of Multiple Clustering Algorithms on Hyperspectral Images
Paperback

Robustness of Multiple Clustering Algorithms on Hyperspectral Images

$55.99
Sign in or become a Readings Member to add this title to your wishlist.

By clustering data into homogeneous groups, analysts can accurately detect anomalies within an image. This research was conducted to determine the most robust algorithm and settings for clustering hyperspectral images. Multiple images were analyzed, employing a variety of clustering algorithms under numerous conditions to include distance measurements for the algorithms and prior data reduction techniques. Various clustering algorithms were employed, including a hierarchical method, ISODATA, K-means, and X-means, and were used on a simple two dimensional dataset in order to discover potential problems with the algorithms. Subsequently, the lessons learned were applied to a subset of a hyperspectral image with known clustering, and the algorithms were scored on how well they performed as the number of outliers was increased. The best algorithm was then used to cluster each of the multiple images using every variable combination tested, and the clusters were input into two global anomaly detectors to determine and validate the most robust algorithm settings.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
128
ISBN
9781025126227

By clustering data into homogeneous groups, analysts can accurately detect anomalies within an image. This research was conducted to determine the most robust algorithm and settings for clustering hyperspectral images. Multiple images were analyzed, employing a variety of clustering algorithms under numerous conditions to include distance measurements for the algorithms and prior data reduction techniques. Various clustering algorithms were employed, including a hierarchical method, ISODATA, K-means, and X-means, and were used on a simple two dimensional dataset in order to discover potential problems with the algorithms. Subsequently, the lessons learned were applied to a subset of a hyperspectral image with known clustering, and the algorithms were scored on how well they performed as the number of outliers was increased. The best algorithm was then used to cluster each of the multiple images using every variable combination tested, and the clusters were input into two global anomaly detectors to determine and validate the most robust algorithm settings.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Paperback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
128
ISBN
9781025126227