Magnetic Field Aided Indoor Navigation, William F Storms (9781025119144) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Magnetic Field Aided Indoor Navigation
Hardback

Magnetic Field Aided Indoor Navigation

$94.99
Sign in or become a Readings Member to add this title to your wishlist.

Many current aiding methods do not work well in an indoor environment, like aiding using the Global Positioning System. The method presented in this research uses magnetic field intensity data from a three-axis magnetometer in order to estimate position using a maximum - likelihood approach. The position measurements are then combined with a motion model using a Kalman filter. The magnetic field navigation algorithm is tested using a combination of simulated and real measurements. The result of these tests show that the position aiding algorithm is capable of generating positon estimates from real data within less than 1 meter of the true trajectory, with most estimates .3 meters away from the true trajectory in a laboratory hallway environment. To further explore the capabilities of the position aiding algorithm, a leader-follower scenario is implemented. In this scenario, the follower uses magnetic field intensity data collected by the leader to estimate its current position and attempt to follow the leader's trajectory. The results show that tracking is possible, and that the measurement span of the leader has a large impact on the result.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
88
ISBN
9781025119144

Many current aiding methods do not work well in an indoor environment, like aiding using the Global Positioning System. The method presented in this research uses magnetic field intensity data from a three-axis magnetometer in order to estimate position using a maximum - likelihood approach. The position measurements are then combined with a motion model using a Kalman filter. The magnetic field navigation algorithm is tested using a combination of simulated and real measurements. The result of these tests show that the position aiding algorithm is capable of generating positon estimates from real data within less than 1 meter of the true trajectory, with most estimates .3 meters away from the true trajectory in a laboratory hallway environment. To further explore the capabilities of the position aiding algorithm, a leader-follower scenario is implemented. In this scenario, the follower uses magnetic field intensity data collected by the leader to estimate its current position and attempt to follow the leader's trajectory. The results show that tracking is possible, and that the measurement span of the leader has a large impact on the result.

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.

This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.

As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Read More
Format
Hardback
Publisher
Hutson Street Press
Date
22 May 2025
Pages
88
ISBN
9781025119144